已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning in solid mechanics: Application to acoustic metamaterial design

超材料 计算机科学 声学 材料科学 机械工程 工程类 物理 光学
作者
Daniel Yago,G. Sal‐Anglada,D. Roca,Juan Carlos Cante Terán,J Oliver
出处
期刊:International Journal for Numerical Methods in Engineering [Wiley]
标识
DOI:10.1002/nme.7476
摘要

Abstract Machine learning (ML) and Deep learning (DL) are increasingly pivotal in the design of advanced metamaterials, seamlessly integrated with material or topology optimization. Their intrinsic capability to predict and interconnect material properties across vast design spaces, often computationally prohibitive for conventional methods, has led to groundbreaking possibilities. This paper introduces an innovative machine learning approach for the optimization of acoustic metamaterials, focusing on Multiresonant Layered Acoustic Metamaterial (MLAM), designed for targeted noise attenuation at low frequencies (below 1000 Hz). This method leverages ML to create a continuous model of the Representative Volume Element (RVE) effective properties essential for evaluating sound transmission loss (STL), and subsequently used to optimize the overall topology configuration for maximum sound attenuation using a Genetic Algorithm (GA). The significance of this methodology lies in its ability to deliver rapid results without compromising accuracy, significantly reducing the computational overhead of complete topology optimization by several orders of magnitude. To demonstrate the versatility and scalability of this approach, it is extended to a more intricate RVE model, characterized by a higher number of parameters, and is optimized using the same strategy. In addition, to underscore the potential of ML techniques in synergy with traditional topology optimization, a comparative analysis is conducted, comparing the outcomes of the proposed method with those obtained through direct numerical simulation (DNS) of the corresponding full 3D MLAM model. This comparative analysis highlights the transformative potential of this combination, particularly when addressing complex topological challenges with significant computational demands, ushering in a new era of metamaterial and component design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
炙热晓露发布了新的文献求助10
4秒前
6秒前
7秒前
sztf05发布了新的文献求助10
7秒前
7秒前
10秒前
可可发布了新的文献求助10
11秒前
中肉肉完成签到 ,获得积分10
12秒前
共享精神应助十柒采纳,获得10
14秒前
16秒前
viyou发布了新的文献求助10
18秒前
Hanayu完成签到 ,获得积分10
18秒前
温暖百招发布了新的文献求助10
19秒前
20秒前
24秒前
cctv18应助科研通管家采纳,获得10
28秒前
FashionBoy应助科研通管家采纳,获得10
28秒前
cctv18应助科研通管家采纳,获得10
29秒前
cctv18应助科研通管家采纳,获得10
29秒前
cctv18应助科研通管家采纳,获得10
29秒前
小二郎应助科研通管家采纳,获得10
29秒前
cctv18应助科研通管家采纳,获得10
29秒前
完美世界应助科研通管家采纳,获得10
29秒前
脑洞疼应助科研通管家采纳,获得10
29秒前
田様应助zy采纳,获得10
30秒前
氘代乙腈是不贵的呀完成签到,获得积分10
31秒前
庾稀发布了新的文献求助10
31秒前
紫金大萝卜举报jj求助涉嫌违规
32秒前
Yuksn发布了新的文献求助10
35秒前
ding应助雪山飞狐采纳,获得10
35秒前
36秒前
酷波er应助Phil采纳,获得10
36秒前
37秒前
所所应助清爽牛排采纳,获得10
39秒前
42秒前
athinperson发布了新的文献求助10
43秒前
英俊的铭应助可可采纳,获得10
44秒前
大个应助可可采纳,获得10
44秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 800
Chinese-English Translation Lexicon Version 3.0 500
Recherches Ethnographiques sue les Yao dans la Chine du Sud 500
Two-sample Mendelian randomization analysis reveals causal relationships between blood lipids and venous thromboembolism 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 460
Aspect and Predication: The Semantics of Argument Structure 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2394950
求助须知:如何正确求助?哪些是违规求助? 2098359
关于积分的说明 5288378
捐赠科研通 1825897
什么是DOI,文献DOI怎么找? 910323
版权声明 559972
科研通“疑难数据库(出版商)”最低求助积分说明 486547