Experimental and quantum chemical investigations on the generation mechanism of Al-V intermediate alloy by aluminothermic reduction of NaVO3

合金 材料科学 等温过程 反应机理 冶金 无机化学 热力学 化学 有机化学 催化作用 物理
作者
Yifan Zhang,Xianwei Hu,Fengguo Liu,Jiaxin Yang,Liyu Chen,Wei Tao,Aimin Liu,Zhongning Shi,Zhaowen Wang
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:945: 169252-169252
标识
DOI:10.1016/j.jallcom.2023.169252
摘要

In the present study, the reaction process and reaction mechanism of the aluminothermic reduction of NaVO3 to prepare aluminum-vanadium intermediate alloy were investigated by experimental analysis and quantum chemical calculations. The results of thermal analysis and isothermal experiments indicated that the aluminothermic reduction of NaVO3 was a multi-step process and temperature played a critical role in this process. The aluminum-vanadium intermediate alloy was generated when the temperature exceeded 963 ºC, and it could be further separated from the reduction product after the addition of slag-forming agents (CaO and CaF2) at 1600 ºC. Furthermore, an atomic-level insight into the reaction between aluminum and NaVO3 was explored based on the electrostatic potential (ESP) analysis of the reactivity of NaVO3. The results showed that the aluminum atom first interacted with NaVO3 to form an intermediate complex through electrostatic interaction, and then NaVO3 was reduced to NaVO2 under the continuous action of aluminum. Further, the newly formed NaVO2 was consequently converted to aluminum-vanadium intermediate alloy under the continuous action of aluminum atoms. These theoretical results were essentially consistent with the experimental data, which provided a fundamental understanding about the reaction mechanism of NaVO3 with Al. Moreover, the aluminothermic reduction of NaVO3 also provided a feasible and environmentally friendly metallurgical approach for preparing aluminum-vanadium intermediate alloy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
serenity完成签到 ,获得积分10
刚刚
pengjiejie完成签到,获得积分10
1秒前
wanci应助iconS_2023采纳,获得10
2秒前
3秒前
3秒前
黎hs完成签到,获得积分20
5秒前
6秒前
超酷奥特应助Mark2020采纳,获得10
8秒前
洗洗发布了新的文献求助30
9秒前
9秒前
专注忆寒发布了新的文献求助10
9秒前
黎hs发布了新的文献求助10
11秒前
Kaives完成签到 ,获得积分10
11秒前
12秒前
12秒前
小蘑菇应助王wkl采纳,获得10
12秒前
13秒前
Hello应助一叶扁舟采纳,获得10
15秒前
无花果应助hanatae采纳,获得10
16秒前
anna1992发布了新的文献求助10
18秒前
山羊穿毛衣完成签到,获得积分10
22秒前
包容的小蘑菇应助Shylie采纳,获得10
22秒前
22秒前
23秒前
24秒前
靓丽采枫完成签到,获得积分10
24秒前
25秒前
hanlin发布了新的文献求助10
25秒前
25秒前
25秒前
三叔应助de采纳,获得20
26秒前
dqz完成签到,获得积分10
26秒前
26秒前
27秒前
Mike001发布了新的文献求助10
27秒前
hanatae发布了新的文献求助10
28秒前
Mike001发布了新的文献求助10
29秒前
29秒前
Xu发布了新的文献求助10
29秒前
t6发布了新的文献求助50
30秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2422821
求助须知:如何正确求助?哪些是违规求助? 2111859
关于积分的说明 5347012
捐赠科研通 1839282
什么是DOI,文献DOI怎么找? 915599
版权声明 561219
科研通“疑难数据库(出版商)”最低求助积分说明 489741