Integrated Proteomics and Metabolomics Analyses of Serum in Chinese Patients with Severe and Active Graves’ Orbitopathy: A Cross-sectional Study

代谢组学 横断面研究 蛋白质组学 医学 内科学 生物信息学 生物 病理 化学 生物化学 基因
作者
Xin Zhong,Lin Hua,Tingting Shi,Hongying Liu,Xiaorong Zhu,Rong-Rong Xie,Ran Sun,Xi Cao,Jin- Kui Yang
出处
期刊:Endocrine, metabolic & immune disorders [Bentham Science Publishers]
卷期号:23 (9): 1151-1161 被引量:1
标识
DOI:10.2174/1871530323666230221120711
摘要

The present study aims to investigate the alterations of serum proteomic and metabolomic profiles in Chinese patients with severe and active Graves' Orbitopathy (GO). Thirty patients with GO and 30 healthy volunteers were enrolled. The serum concentrations of FT3, FT4, T3, T4, and thyroid-stimulating hormone (TSH) were analyzed, after which TMT labeling-based proteomics and untargeted metabolomics were performed. Metabo- Analyst and Ingenuity Pathway Analysis (IPA) was used for integrated network analysis. A nomogram was established based on the model to explore the disease prediction ability of the identified feature metabolites. One hundred thirteen proteins (19 up-regulated and 94 down-regulated) and 75 metabolites (20 increased and 55 decreased) were significantly altered in GO compared to the control group. By combining the lasso regression, IPA network, and protein-metabolite-disease sub-networks, we extracted feature proteins (CPS1, GP1BA, and COL6A1) and feature metabolites (glycine, glycerol 3-phosphate, and estrone sulfate). The logistic regression analysis revealed that the full model with the prediction factors and three identified feature metabolites had better prediction performance for GO compared to the baseline model. The ROC curve also indicated better prediction performance (AUC = 0.933 vs. 0.789). A new biomarker cluster combined with three blood metabolites with high statistical power can be used to discriminate patients with GO. These findings provide further insights into the pathogenesis, diagnosis, and potential therapeutic targets for this disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑袋空空完成签到,获得积分10
刚刚
勤奋大地发布了新的文献求助10
刚刚
刚刚
1秒前
进击的巨人完成签到 ,获得积分10
1秒前
清脆糖豆完成签到,获得积分10
2秒前
阿巴阿巴阿巴完成签到,获得积分10
2秒前
下载文章即可完成签到,获得积分10
2秒前
2秒前
CCYL完成签到,获得积分20
3秒前
土土发布了新的文献求助10
3秒前
无花果应助守望阳光1采纳,获得10
3秒前
3秒前
cici发布了新的文献求助10
4秒前
louxiaohan完成签到,获得积分10
4秒前
所所应助小布丁采纳,获得10
4秒前
4秒前
热心的诗蕊完成签到,获得积分10
6秒前
蝙蝠发布了新的文献求助50
6秒前
new_vision完成签到,获得积分10
6秒前
大个应助蓝血之人采纳,获得10
7秒前
帅过彭于晏完成签到,获得积分10
7秒前
8秒前
研究生吗喽完成签到,获得积分10
8秒前
8秒前
111完成签到,获得积分10
9秒前
maaicui完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
苏苏完成签到,获得积分10
10秒前
HJZ完成签到,获得积分10
10秒前
11秒前
爱科研完成签到,获得积分10
12秒前
恸哭的千鸟完成签到,获得积分10
12秒前
波安班完成签到,获得积分10
12秒前
xiaoyao完成签到,获得积分10
12秒前
欣喜静枫完成签到,获得积分10
12秒前
KXC2024完成签到,获得积分20
12秒前
12秒前
13秒前
科研搬运工完成签到,获得积分10
13秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3886110
求助须知:如何正确求助?哪些是违规求助? 3428192
关于积分的说明 10758434
捐赠科研通 3152985
什么是DOI,文献DOI怎么找? 1740754
邀请新用户注册赠送积分活动 840369
科研通“疑难数据库(出版商)”最低求助积分说明 785329