Unsupervised machine learning model to predict cognitive impairment in subcortical ischemic vascular disease

认知障碍 磁共振弥散成像 功能磁共振成像 磁共振成像 人工智能 医学 认知 机器学习 心理学 计算机科学 神经科学 放射科
作者
Qi Qin,Junda Qu,Yunsi Yin,Ying Liang,Yan Wang,Bingxin Xie,Qingqing Liu,Xuan Wang,Xinyi Xia,Meng Wang,Xu Zhang,Jianping Jia,Yi Xing,Chunlin Li,Yi Tang
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:19 (8): 3327-3338 被引量:14
标识
DOI:10.1002/alz.12971
摘要

Abstract INTRODUCTION It is challenging to predict which patients who meet criteria for subcortical ischemic vascular disease (SIVD) will ultimately progress to subcortical vascular cognitive impairment (SVCI). METHODS We collected clinical information, neuropsychological assessments, T1 imaging, diffusion tensor imaging, and resting‐state functional magnetic resonance imaging from 83 patients with SVCI and 53 age‐matched patients with SIVD without cognitive impairment. We built an unsupervised machine learning model to isolate patients with SVCI. The model was validated using multimodal data from an external cohort comprising 45 patients with SVCI and 32 patients with SIVD without cognitive impairment. RESULTS The accuracy, sensitivity, and specificity of the unsupervised machine learning model were 86.03%, 79.52%, and 96.23% and 80.52%, 71.11%, and 93.75% for internal and external cohort, respectively. DISCUSSION We developed an accurate and accessible clinical tool which requires only data from routine imaging to predict patients at risk of progressing from SIVD to SVCI. Highlights Our unsupervised machine learning model provides an accurate and accessible clinical tool to predict patients at risk of progressing from subcortical ischemic vascular disease (SIVD) to subcortical vascular cognitive impairment (SVCI) and requires only data from imaging routinely used during the diagnosis of suspected SVCI. The model yields good accuracy, sensitivity, and specificity and is portable to other cohorts and to clinical practice to distinguish patients with SIVD at risk for progressing to SVCI. The model combines assessment of diffusion tensor imaging and functional magnetic resonance imaging measures in patients with SVCI to analyze whether the “disconnection hypothesis” contributes to functional and structural changes and to the clinical presentation of SVCI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助吉吉采纳,获得10
刚刚
2秒前
充电宝应助沉淀采纳,获得10
2秒前
xiaowang发布了新的文献求助10
4秒前
xiaogua完成签到,获得积分10
4秒前
4秒前
浮游应助浅色凉生采纳,获得10
6秒前
苽峰发布了新的文献求助10
6秒前
7秒前
李健应助猪猪hero采纳,获得10
7秒前
xiaogua发布了新的文献求助10
8秒前
8秒前
8秒前
小段同学完成签到,获得积分20
8秒前
茜茜313完成签到,获得积分10
9秒前
wanci应助苽峰采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助20
10秒前
12秒前
12秒前
13秒前
13秒前
13秒前
北岸初晴发布了新的文献求助10
14秒前
书一卷发布了新的文献求助10
14秒前
Tingting发布了新的文献求助10
14秒前
小段同学发布了新的文献求助10
15秒前
15秒前
nina完成签到 ,获得积分10
16秒前
韦娜完成签到,获得积分10
16秒前
16秒前
111发布了新的文献求助10
18秒前
xiaowang完成签到,获得积分10
18秒前
19秒前
19秒前
heshen关注了科研通微信公众号
20秒前
snai1发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
22秒前
思源应助DianaRang采纳,获得10
22秒前
无心的梦蕊完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5011838
求助须知:如何正确求助?哪些是违规求助? 4253162
关于积分的说明 13253185
捐赠科研通 4055874
什么是DOI,文献DOI怎么找? 2218424
邀请新用户注册赠送积分活动 1228027
关于科研通互助平台的介绍 1150278