Unsupervised machine learning model to predict cognitive impairment in subcortical ischemic vascular disease

认知障碍 磁共振弥散成像 功能磁共振成像 磁共振成像 人工智能 医学 认知 机器学习 心理学 计算机科学 神经科学 放射科
作者
Qi Qin,Junda Qu,Yunsi Yin,Ying Liang,Yan Wang,Bingxin Xie,Qingqing Liu,Xuan Wang,Xinyi Xia,Meng Wang,Xu Zhang,Jianping Jia,Yi Xing,Chunlin Li,Yi Tang
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:19 (8): 3327-3338 被引量:10
标识
DOI:10.1002/alz.12971
摘要

Abstract INTRODUCTION It is challenging to predict which patients who meet criteria for subcortical ischemic vascular disease (SIVD) will ultimately progress to subcortical vascular cognitive impairment (SVCI). METHODS We collected clinical information, neuropsychological assessments, T1 imaging, diffusion tensor imaging, and resting‐state functional magnetic resonance imaging from 83 patients with SVCI and 53 age‐matched patients with SIVD without cognitive impairment. We built an unsupervised machine learning model to isolate patients with SVCI. The model was validated using multimodal data from an external cohort comprising 45 patients with SVCI and 32 patients with SIVD without cognitive impairment. RESULTS The accuracy, sensitivity, and specificity of the unsupervised machine learning model were 86.03%, 79.52%, and 96.23% and 80.52%, 71.11%, and 93.75% for internal and external cohort, respectively. DISCUSSION We developed an accurate and accessible clinical tool which requires only data from routine imaging to predict patients at risk of progressing from SIVD to SVCI. Highlights Our unsupervised machine learning model provides an accurate and accessible clinical tool to predict patients at risk of progressing from subcortical ischemic vascular disease (SIVD) to subcortical vascular cognitive impairment (SVCI) and requires only data from imaging routinely used during the diagnosis of suspected SVCI. The model yields good accuracy, sensitivity, and specificity and is portable to other cohorts and to clinical practice to distinguish patients with SIVD at risk for progressing to SVCI. The model combines assessment of diffusion tensor imaging and functional magnetic resonance imaging measures in patients with SVCI to analyze whether the “disconnection hypothesis” contributes to functional and structural changes and to the clinical presentation of SVCI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ricardo完成签到,获得积分10
刚刚
刚刚
1秒前
灿烂阳光下的稻田完成签到,获得积分10
3秒前
gyl完成签到 ,获得积分10
5秒前
dada发布了新的文献求助10
5秒前
大力洋葱发布了新的文献求助30
5秒前
mouxq发布了新的文献求助10
6秒前
小二郎应助科研通管家采纳,获得10
7秒前
7秒前
情怀应助lulu采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得20
9秒前
Akim应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
9秒前
wch071完成签到,获得积分10
11秒前
yy完成签到 ,获得积分10
11秒前
Y_Z发布了新的文献求助30
12秒前
张张完成签到,获得积分20
12秒前
13秒前
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776189
求助须知:如何正确求助?哪些是违规求助? 3321701
关于积分的说明 10207096
捐赠科研通 3036920
什么是DOI,文献DOI怎么找? 1666478
邀请新用户注册赠送积分活动 797492
科研通“疑难数据库(出版商)”最低求助积分说明 757859