Silent Speech Recognition Based on Surface Electromyography Using a Few Electrode Sites Under the Guidance From High-Density Electrode Arrays

计算机科学 词汇 可穿戴计算机 语音识别 软件可移植性 学习迁移 卷积神经网络 电极阵列 人工智能 模式识别(心理学) 电极 哲学 物理化学 嵌入式系统 语言学 化学 程序设计语言
作者
Zhihang Deng,Xu Zhang,Xi Chen,Xiang Chen,Xun Chen,Erwei Yin
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:10
标识
DOI:10.1109/tim.2023.3244849
摘要

Although surface electromyogram (sEMG) recorded from high-density electrode array is believed to carry sufficient spatial information that can benefit the decoding of motor intentions, the complexity of using the array hindered its widespread applications, especially in wearable devices. This study is aimed to develop a nonacoustic modality of silent speech recognition (SSR) that transfers knowledge learned from high-density array to a system using a few channels, with both high portability and performance. A convolutional neural network (CNN) was established for recognizing a vocabulary of 33 Chinese words during subvocal speech production. The network was trained by the data recorded from face and neck muscles using two arrays with 64 channels in the source domain. Then, it was calibrated through a transfer learning approach to grant its adaption to a new target domain with the data recorded by eight separated electrodes, while its good capability of characterizing subvocal speech word patterns is expected to be maintained. The proposed method significantly outperformed three common classification approaches and the baseline approach without transfer learning (a network trained with data just from the target domain). Under conditions of electrode shift and cross-user variability, it still obtained performance improvements. The method is demonstrated to be viable for transfer learning across domains of electrode settings and it facilitates to improve the performance of SSR systems using separate electrode sites under the guidance from high density of arrays.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玄金道人发布了新的文献求助10
刚刚
1秒前
tannie完成签到 ,获得积分0
1秒前
yy完成签到,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
lxm完成签到,获得积分10
3秒前
思源应助oy采纳,获得10
3秒前
3秒前
4秒前
充电宝应助wyk采纳,获得10
4秒前
醉熏的幼珊完成签到,获得积分10
5秒前
我是老大应助元万天采纳,获得10
5秒前
随性发布了新的文献求助10
5秒前
rainc完成签到,获得积分10
7秒前
7秒前
lg20010419完成签到,获得积分10
7秒前
汉堡包应助白樱恋曲采纳,获得10
7秒前
mrking发布了新的文献求助10
8秒前
玄金道人发布了新的文献求助10
8秒前
科研通AI6应助dd采纳,获得10
9秒前
10秒前
yy发布了新的文献求助10
10秒前
田様应助饱满服饰采纳,获得10
10秒前
霜降完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
12秒前
12秒前
zt完成签到,获得积分10
12秒前
13秒前
13秒前
霜降发布了新的文献求助10
13秒前
13秒前
搜集达人应助lql采纳,获得10
13秒前
想人陪的尔芙完成签到,获得积分10
13秒前
田様应助Apricot采纳,获得10
14秒前
科研通AI6应助小周采纳,获得10
14秒前
kyan完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5086374
求助须知:如何正确求助?哪些是违规求助? 4302147
关于积分的说明 13406829
捐赠科研通 4127297
什么是DOI,文献DOI怎么找? 2260275
邀请新用户注册赠送积分活动 1264492
关于科研通互助平台的介绍 1198653