NO Oxidation Using H2O2 at a Single-Atom Iron Catalyst

催化作用 化学 氧化剂 催化氧化 氧化还原 反应机理 活化能 密度泛函理论 光化学 氧化物 无机化学 计算化学 物理化学 有机化学
作者
Weijie Yang,Liugang Chen,Binghui Zhou,Zhenhe Jia,Xiaoshuo Liu,Yanfeng Liu,Hao Li,Zhengyang Gao
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:127 (27): 13011-13020 被引量:12
标识
DOI:10.1021/acs.jpcc.3c01976
摘要

Nitrogen oxide (NO) is a major worldwide environmental pollutant, which can be eliminated effectively by catalytic oxidation. However, conventional catalysts generally suffer from poor activity and low oxidation rates, limiting the development of gas pollutant removal. To overcome this issue, the high activity of a single-atom catalyst and the strong oxidizability of H2O2 are proposed for the catalytic oxidation of NO in this work. Herein, the 14 reaction pathways of NO oxidation using H2O2 were obtained through spin-polarized density functional theory calculation with van der Waals corrections and microkinetic modeling. Considering the possible H2O2 activation products of *OH, *OOH, and *O, we obtained the dominant reaction pathways for different oxidizing species: (i) Langmuir–Hinshelwood mechanism of *OH (mainly forming *HNO2), (ii) Eley–Rideal mechanism of *O (forming *NO2), and (iii) *OOH (forming *HNO3), with the energy barriers of 0.94, 1.42, and 0.14 eV, respectively. Among the three reaction patterns, NO oxidation using *OOH is the most favorable, with the highest reaction rate. *HNO3 is the most likely oxidation product of NO oxidation using H2O2. Meanwhile, it is notable that the *OH catalytic oxidation of NO has multiple reaction pathways and products, including HNO2, NO2, and HNO3. Compared to the use of conventional oxidants and catalysts, using H2O2 to oxidize NO at Fe–N4–C catalyst has lower reaction energy barriers and allows for the deep oxidation of NO. This study illustrates the reaction pathway of NO oxidation using H2O2 and demonstrates that it is theoretically feasible, which provides guidance for the subsequent preparation of the material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhengtingjin完成签到,获得积分10
1秒前
1秒前
1秒前
文艺芝完成签到,获得积分10
1秒前
背后梦安发布了新的文献求助10
1秒前
2秒前
小蘑菇应助噜噜晓采纳,获得10
3秒前
喵叽发布了新的文献求助10
3秒前
田様应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
3秒前
曲意风华发布了新的文献求助10
3秒前
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
生动路人应助科研通管家采纳,获得10
4秒前
4秒前
cherlie应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助平常映雁采纳,获得10
5秒前
123123123发布了新的文献求助10
5秒前
钇点点完成签到,获得积分10
6秒前
6秒前
Liufgui应助菲菲采纳,获得30
6秒前
大圣发布了新的文献求助10
6秒前
7秒前
CodeCraft应助执着梦柏采纳,获得10
7秒前
7秒前
nextconnie完成签到,获得积分10
9秒前
Liufgui应助酒姬采纳,获得50
9秒前
充电宝应助曲意风华采纳,获得10
9秒前
今后应助钇点点采纳,获得10
10秒前
10秒前
杨可言完成签到,获得积分10
11秒前
dt发布了新的文献求助10
11秒前
微眠发布了新的文献求助10
12秒前
可爱的函函应助zebs采纳,获得10
12秒前
坚定尔蓝完成签到,获得积分10
13秒前
科研通AI2S应助捌贰陆柒采纳,获得10
13秒前
14秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4006565
求助须知:如何正确求助?哪些是违规求助? 3546393
关于积分的说明 11295911
捐赠科研通 3282081
什么是DOI,文献DOI怎么找? 1809886
邀请新用户注册赠送积分活动 885656
科研通“疑难数据库(出版商)”最低求助积分说明 811078