Integrated wildfire danger models and factors: A review

文档 计算机科学 过程(计算) 斯科普斯 可预测性 概率逻辑 数据科学 机器学习 数据挖掘 人工智能 统计 数学 梅德林 政治学 法学 程序设计语言 操作系统
作者
Ioannis Zacharakis,Vassiliοs A. Tsihrintzis
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:899: 165704-165704 被引量:20
标识
DOI:10.1016/j.scitotenv.2023.165704
摘要

Wildfires have been systematically studied from the early 1950s, with significant progress in the applied computational methodologies during the 21st century. However, modern methods are barely adopted by administrative authorities, globally, especially those considering probabilistic models concerning human-caused fires. An exhaustive review on wildfire danger studies has not yet been performed. Therefore, the present review aims at collecting and analyzing integrated modeling approaches in estimating forest fire danger, examining the driving factors, and evaluating their influence on fire occurrence. The main objective is to propose the top performing methods and the most important risk factors for the development of an Integrated Wildfire Danger Risk System (IWDRS). Studies were classified based on the applied technique, i.e., geographic information systems, remote sensing, statistics, machine learning, simulation modeling and miscellaneous techniques. The conclusions of each study concerning the relative importance of model input variables are also reported. Online search engines such as 'Scopus', 'Google Scholar', 'WorldWideScience', 'ScienceDirect' and 'ResearchGate' were used in relevant literature searches published in scientific journals, manuals and technical documentation. A total of 230 studies were gathered with a selected subset being evaluated in a meta-analysis process. Machine learning techniques outperform average classic statistics, although their predictability relies heavily on the quantity and the quality of the input data. Geographic information systems and remote sensing are considered valuable yet supplementary tools. Modeling techniques apply best to fire behavior prediction, while other techniques referenced in the current review are potentially useful but further investigation is needed. In conclusion, wildfire danger is a function of seven thematic groups of variables: meteorology, vegetation, topography, hydrology, socio-economy, land use and climate. Ninety-five explanatory drivers are proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoxiao1992发布了新的文献求助20
1秒前
二三三完成签到 ,获得积分10
1秒前
JJ完成签到,获得积分10
1秒前
lidm完成签到,获得积分10
2秒前
nuomici完成签到,获得积分10
2秒前
Square完成签到,获得积分10
3秒前
3秒前
西瓜以亦完成签到 ,获得积分10
3秒前
Ming完成签到,获得积分10
3秒前
格林完成签到,获得积分10
3秒前
3秒前
nt完成签到,获得积分10
4秒前
阿宅完成签到,获得积分10
4秒前
JJ发布了新的文献求助10
4秒前
oranka1完成签到,获得积分10
4秒前
芳芳完成签到,获得积分10
4秒前
Jin完成签到,获得积分10
5秒前
5秒前
刘瑶发布了新的文献求助10
5秒前
clione完成签到,获得积分10
6秒前
残幻应助聪慧芷巧采纳,获得10
6秒前
端庄沉鱼完成签到,获得积分10
7秒前
zxcv23发布了新的文献求助10
7秒前
snail01完成签到,获得积分10
7秒前
Samuel发布了新的文献求助10
7秒前
cdercder应助刘勇采纳,获得10
8秒前
英姑应助刘勇采纳,获得10
8秒前
不安豁完成签到,获得积分10
8秒前
9秒前
小乌龟完成签到,获得积分10
9秒前
小白t73发布了新的文献求助10
10秒前
yan123完成签到 ,获得积分10
11秒前
斯文败类应助过儿采纳,获得10
12秒前
周涛完成签到,获得积分10
13秒前
916发布了新的文献求助10
13秒前
田様应助小白t73采纳,获得10
14秒前
he完成签到 ,获得积分10
14秒前
无花果应助小白采纳,获得10
14秒前
YY完成签到,获得积分10
14秒前
kikiii完成签到,获得积分10
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816117
求助须知:如何正确求助?哪些是违规求助? 3359667
关于积分的说明 10403987
捐赠科研通 3077496
什么是DOI,文献DOI怎么找? 1690307
邀请新用户注册赠送积分活动 813741
科研通“疑难数据库(出版商)”最低求助积分说明 767781