Criticality of Prognostics in the Operations of Autonomous Aircraft

预言 系统工程 风险分析(工程) 可靠性工程 可验证秘密共享 工程类 航空电子设备 计算机科学 集合(抽象数据类型) 医学 程序设计语言 航空航天工程
作者
George Vachtsevanos,Ravi Rajamani
出处
期刊:SAE International Journal of Aerospace [SAE International]
卷期号:16 (3) 被引量:3
标识
DOI:10.4271/01-16-03-0022
摘要

<div>This article addresses the design, testing, and evaluation of rigorous and verifiable prognostic and health management (PHM) functions applied to autonomous aircraft systems. These PHM functions—many deployed as algorithms—are integrated into a holistic framework for integrity management of aircraft components and systems that are subject to both operational degradation and incipient failure modes. The designer of a comprehensive and verifiable prognostics system is faced with significant challenges. Data (both baseline and faulted) that are correlated, time stamped, and appropriately sampled are not always readily available. Quantifying uncertainty, and its propagation and management, which are inherent in prognosis, can be difficult. High-fidelity modeling of critical components/systems can consume precious resources. Data mining tools for feature extraction and selection are not easy to develop and maintain. And finally, diagnostic and prognostic algorithms that address accurately the designer’s specifications are not easy to develop, verify, deploy, and sustain. These are just the technical challenges. On top of these are business challenges, for example, demonstrating that the PHM functionality will be economically beneficial to the system stakeholders, and finally, there are regulatory challenges, such as, assuring the authorities that the PHM system will have the necessary safety assurance levels while delivering its performance goals. This article tackles all three aspects of the use of PHM systems in autonomous systems. It outlines how some of the technical challenges have been overcome and demonstrates why PHM could be essential in this ecosystem and why regulatory authorities are increasingly open to the use of PHM systems even in the most safety-critical areas of aviation.</div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安南发布了新的文献求助10
刚刚
狂奔弟弟完成签到 ,获得积分10
刚刚
怡然凌柏完成签到 ,获得积分10
刚刚
my发布了新的文献求助10
2秒前
Chris给Chris的求助进行了留言
3秒前
穆紫月懒阳阳完成签到,获得积分10
5秒前
FashionBoy应助霸气秀采纳,获得10
10秒前
木木完成签到,获得积分10
11秒前
李爱国应助长孙归尘采纳,获得10
12秒前
我是老大应助yancy采纳,获得10
12秒前
13秒前
晓薇完成签到,获得积分10
14秒前
研友_VZG7GZ应助安南采纳,获得10
14秒前
18秒前
tuanhust应助Hayeronis采纳,获得30
20秒前
20秒前
逆熵发布了新的文献求助10
22秒前
23秒前
24秒前
易安发布了新的文献求助30
25秒前
长孙归尘发布了新的文献求助10
26秒前
标致雁完成签到,获得积分20
27秒前
27秒前
传奇3应助Jolleyhaha采纳,获得10
28秒前
29秒前
AltairKing发布了新的文献求助30
30秒前
慕青应助熊宜浓采纳,获得10
31秒前
哈哈哈哈哈完成签到,获得积分10
31秒前
31秒前
皮尤尤发布了新的文献求助10
31秒前
小狼lmt完成签到 ,获得积分10
32秒前
32秒前
标致雁发布了新的文献求助10
32秒前
长安乱世完成签到 ,获得积分0
32秒前
33秒前
33秒前
多年以后完成签到,获得积分10
33秒前
chenll1988发布了新的文献求助50
35秒前
柴郡喵完成签到,获得积分10
37秒前
菲_发布了新的文献求助10
38秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Mortality and adverse events of special interest with intravenous belimumab for adults with active, autoantibody-positive systemic lupus erythematosus (BASE): a multicentre, double-blind, randomised, placebo-controlled, phase 4 trial 390
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838438
求助须知:如何正确求助?哪些是违规求助? 3380785
关于积分的说明 10515798
捐赠科研通 3100383
什么是DOI,文献DOI怎么找? 1707474
邀请新用户注册赠送积分活动 821754
科研通“疑难数据库(出版商)”最低求助积分说明 772930