Developing a machine learning model for detecting depression, anxiety, and apathy in older adults with mild cognitive impairment using speech and facial expressions: A cross-sectional observational study

冷漠 焦虑 痴呆 心理学 观察研究 萧条(经济学) 认知 临床心理学 精神科 医学 疾病 病理 经济 宏观经济学
作者
Ying Zhou,Wei Han,Xiuyu Yao,Jiajun Xue,Zheng Li,Yingxin Li
出处
期刊:International Journal of Nursing Studies [Elsevier BV]
卷期号:146: 104562-104562 被引量:26
标识
DOI:10.1016/j.ijnurstu.2023.104562
摘要

Depression, anxiety, and apathy are highly prevalent in older people with preclinical dementia and mild cognitive impairment. These symptoms have also proven valuable in predicting the progression from mild cognitive impairment to dementia, enabling a timely diagnosis and treatment. However, objective and reliable indicators to detect and distinguish depression, anxiety, and apathy are relatively scarce.This study aimed to develop a machine learning model to detect and distinguish depression, anxiety, and apathy based on speech and facial expressions.An observational, cross-sectional study design.The memory outpatient department of a tertiary hospital.319 older adults diagnosed with mild cognitive impairment.Depression, anxiety, and apathy were evaluated by the Public Health Questionnaire, General Anxiety Disorder, and Apathy Evaluation Scale, respectively. Speech and facial expressions of older adults with mild cognitive impairment were digitally captured using audio and video recording software. Open-source data analysis toolkits were utilized to extract speech, facial, and text features. The multiclass classification was used to develop classification models, and shapely additive explanations were used to explain the contribution of each feature within the model.The random forest method was used to develop a multiclass emotion classification model, which performed well in classifying emotions with a weighted-average F1 score of 96.6 %. The model also demonstrated high accuracy, precision, and recall, with 87.4 %, 86.6 %, and 87.6 %, respectively.The machine learning model developed in this study demonstrated strong classification performance in detecting and differentiating depression, anxiety, and apathy. This innovative approach combines text, audio, and video to provide objective methods for precise classification and remote monitoring of these symptoms in nursing practice.This study was registered at the Chinese Clinical Trial Registry (registration number: ChiCTR1900023892; registration date: June 19th, 2019).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陶醉小笼包完成签到 ,获得积分10
1秒前
Wang发布了新的文献求助10
3秒前
短巷完成签到 ,获得积分10
4秒前
康谨完成签到 ,获得积分10
7秒前
随心所欲完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助20
14秒前
江三村完成签到 ,获得积分0
22秒前
忧伤的慕梅完成签到 ,获得积分10
29秒前
玖月完成签到 ,获得积分0
30秒前
爱我不上火完成签到 ,获得积分10
33秒前
Hello应助言言言言采纳,获得10
34秒前
科研通AI5应助舒舒采纳,获得10
37秒前
量子星尘发布了新的文献求助20
39秒前
光亮若翠完成签到,获得积分10
47秒前
雪儿完成签到 ,获得积分10
47秒前
典雅的纸飞机完成签到 ,获得积分10
50秒前
50秒前
量子星尘发布了新的文献求助20
51秒前
欧阳发布了新的文献求助10
52秒前
谨慎的哈密瓜完成签到 ,获得积分10
52秒前
zenabia完成签到 ,获得积分10
52秒前
忧伤的绍辉完成签到 ,获得积分10
53秒前
gsji完成签到 ,获得积分10
55秒前
master-f完成签到 ,获得积分10
55秒前
梁间容完成签到 ,获得积分10
56秒前
科研通AI6应助kchen85采纳,获得10
56秒前
米卫兵_星完成签到 ,获得积分10
57秒前
12305014077完成签到 ,获得积分10
1分钟前
博qb完成签到 ,获得积分0
1分钟前
M鹿M完成签到 ,获得积分10
1分钟前
端庄半凡完成签到 ,获得积分10
1分钟前
崩溃完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助50
1分钟前
欧阳给欧阳的求助进行了留言
1分钟前
stuuuuuuuuuuudy完成签到 ,获得积分10
1分钟前
laohei94_6完成签到 ,获得积分10
1分钟前
牛马完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助50
1分钟前
夜倾心完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4984667
求助须知:如何正确求助?哪些是违规求助? 4235446
关于积分的说明 13190095
捐赠科研通 4028180
什么是DOI,文献DOI怎么找? 2203709
邀请新用户注册赠送积分活动 1215782
关于科研通互助平台的介绍 1133333