亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Developing a machine learning model for detecting depression, anxiety, and apathy in older adults with mild cognitive impairment using speech and facial expressions: A cross-sectional observational study

冷漠 焦虑 痴呆 心理学 观察研究 萧条(经济学) 认知 临床心理学 精神科 医学 疾病 病理 经济 宏观经济学
作者
Ying Zhou,Wei Han,Xiuyu Yao,Jiajun Xue,Zheng Li,Yingxin Li
出处
期刊:International Journal of Nursing Studies [Elsevier BV]
卷期号:146: 104562-104562 被引量:12
标识
DOI:10.1016/j.ijnurstu.2023.104562
摘要

Depression, anxiety, and apathy are highly prevalent in older people with preclinical dementia and mild cognitive impairment. These symptoms have also proven valuable in predicting the progression from mild cognitive impairment to dementia, enabling a timely diagnosis and treatment. However, objective and reliable indicators to detect and distinguish depression, anxiety, and apathy are relatively scarce.This study aimed to develop a machine learning model to detect and distinguish depression, anxiety, and apathy based on speech and facial expressions.An observational, cross-sectional study design.The memory outpatient department of a tertiary hospital.319 older adults diagnosed with mild cognitive impairment.Depression, anxiety, and apathy were evaluated by the Public Health Questionnaire, General Anxiety Disorder, and Apathy Evaluation Scale, respectively. Speech and facial expressions of older adults with mild cognitive impairment were digitally captured using audio and video recording software. Open-source data analysis toolkits were utilized to extract speech, facial, and text features. The multiclass classification was used to develop classification models, and shapely additive explanations were used to explain the contribution of each feature within the model.The random forest method was used to develop a multiclass emotion classification model, which performed well in classifying emotions with a weighted-average F1 score of 96.6 %. The model also demonstrated high accuracy, precision, and recall, with 87.4 %, 86.6 %, and 87.6 %, respectively.The machine learning model developed in this study demonstrated strong classification performance in detecting and differentiating depression, anxiety, and apathy. This innovative approach combines text, audio, and video to provide objective methods for precise classification and remote monitoring of these symptoms in nursing practice.This study was registered at the Chinese Clinical Trial Registry (registration number: ChiCTR1900023892; registration date: June 19th, 2019).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zsmj23完成签到 ,获得积分0
14秒前
Perion完成签到 ,获得积分10
28秒前
发嗲的火龙果完成签到,获得积分10
1分钟前
1分钟前
1分钟前
顾矜应助发嗲的火龙果采纳,获得10
1分钟前
传奇完成签到 ,获得积分10
2分钟前
拼搏的败完成签到 ,获得积分10
2分钟前
烟花应助he0570采纳,获得10
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
Jasper应助科研通管家采纳,获得10
2分钟前
yan完成签到 ,获得积分10
3分钟前
实验体8567号完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
清秀的之桃完成签到 ,获得积分10
4分钟前
欣欣子完成签到 ,获得积分10
4分钟前
阿尔法贝塔完成签到 ,获得积分10
4分钟前
5分钟前
lanbing802发布了新的文献求助10
5分钟前
ding应助lanbing802采纳,获得10
6分钟前
6分钟前
郭郭9706发布了新的文献求助10
6分钟前
chiazy完成签到 ,获得积分10
6分钟前
善学以致用应助从容栾采纳,获得10
6分钟前
郭郭9706完成签到,获得积分20
7分钟前
Wu完成签到,获得积分20
7分钟前
Wu发布了新的文献求助10
7分钟前
JamesPei应助mili采纳,获得10
8分钟前
9分钟前
9分钟前
9分钟前
情怀应助d00007采纳,获得10
9分钟前
mili发布了新的文献求助10
9分钟前
虚心完成签到 ,获得积分10
9分钟前
10分钟前
从容栾发布了新的文献求助10
10分钟前
Obliviate完成签到,获得积分10
10分钟前
Jasmine完成签到,获得积分10
10分钟前
he0570完成签到 ,获得积分10
11分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782683
求助须知:如何正确求助?哪些是违规求助? 3328076
关于积分的说明 10234387
捐赠科研通 3043042
什么是DOI,文献DOI怎么找? 1670442
邀请新用户注册赠送积分活动 799684
科研通“疑难数据库(出版商)”最低求助积分说明 758994