Delta radiomics model for the prediction of progression-free survival time in advanced non-small-cell lung cancer patients after immunotherapy

无线电技术 医学 肺癌 肿瘤科 免疫疗法 内科学 阶段(地层学) 无进展生存期 癌症 放射科 总体生存率 生物 古生物学
作者
Dong Xie,Fangyi Xu,Wenchao Zhu,Cailing Pu,Shaoyu Huang,Kaihua Lou,Yan Wu,Dingpin Huang,Cong He,Hongjie Hu
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:12 被引量:25
标识
DOI:10.3389/fonc.2022.990608
摘要

To assess the validity of pre- and posttreatment computed tomography (CT)-based radiomics signatures and delta radiomics signatures for predicting progression-free survival (PFS) in stage III-IV non-small-cell lung cancer (NSCLC) patients after immune checkpoint inhibitor (ICI) therapy.Quantitative image features of the largest primary lung tumours were extracted on CT-enhanced imaging at baseline (time point 0, TP0) and after the 2nd-3rd immunotherapy cycles (time point 1, TP1). The critical features were selected to construct TP0, TP1 and delta radiomics signatures for the risk stratification of patient survival after ICI treatment. In addition, a prediction model integrating the clinicopathologic risk characteristics and phenotypic signature was developed for the prediction of PFS.The C-index of TP0, TP1 and delta radiomics models in the training and validation cohort were 0.64, 0.75, 0.80, and 0.61, 0.68, 0.78, respectively. The delta radiomics score exhibited good accuracy for distinguishing patients with slow and rapid progression to ICI treatment. The predictive accuracy of the combined prediction model was higher than that of the clinical prediction model in both training and validation sets (P<0.05), with a C-index of 0.83 and 0.70, respectively. Additionally, the delta radiomics model (C-index of 0.86) had a higher predictive accuracy compared to PD-L1 expression (C-index of 0.50) (P<0.0001).The combined prediction model including clinicopathologic characteristics (tumour anatomical classification and brain metastasis) and the delta radiomics signature could achieve the individualized prediction of PFS in ICIs-treated NSCLC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
koi完成签到,获得积分10
1秒前
脑洞疼应助学术废柴采纳,获得10
2秒前
orixero应助lcdamoy采纳,获得10
4秒前
哆啦的空间站完成签到,获得积分10
5秒前
1234567发布了新的文献求助10
6秒前
可爱的函函应助高高代珊采纳,获得10
7秒前
领导范儿应助ny采纳,获得10
8秒前
一期一会发布了新的文献求助10
9秒前
新八发布了新的文献求助30
9秒前
11秒前
12秒前
耶耶耶完成签到,获得积分10
13秒前
qqq完成签到,获得积分20
15秒前
胖虎发布了新的文献求助10
15秒前
调皮帆布鞋完成签到,获得积分10
16秒前
个性雁开发布了新的文献求助10
16秒前
风轻青柠完成签到,获得积分10
17秒前
犹豫的夏旋完成签到 ,获得积分10
17秒前
MR应助种一个月亮采纳,获得10
17秒前
寒江雪完成签到,获得积分0
18秒前
勤劳的以蓝完成签到,获得积分10
18秒前
依依818完成签到,获得积分10
19秒前
AQI完成签到,获得积分10
19秒前
入暖完成签到,获得积分10
19秒前
20秒前
20秒前
www应助夜白采纳,获得30
21秒前
21秒前
Jenny应助依依818采纳,获得10
22秒前
Sunnie完成签到,获得积分10
22秒前
xiao完成签到 ,获得积分10
23秒前
25秒前
bkagyin应助一期一会采纳,获得10
26秒前
慕青应助清欢采纳,获得10
26秒前
26秒前
26秒前
领悟完成签到,获得积分10
28秒前
wangjius完成签到,获得积分10
28秒前
29秒前
YE完成签到,获得积分10
30秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1018
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Eco-Friendly Skin Solutions for Natural Cosmeceuticals 500
Apiaceae Himalayenses. 2 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4082955
求助须知:如何正确求助?哪些是违规求助? 3622222
关于积分的说明 11491182
捐赠科研通 3337161
什么是DOI,文献DOI怎么找? 1834493
邀请新用户注册赠送积分活动 903413
科研通“疑难数据库(出版商)”最低求助积分说明 821584