Delta radiomics model for the prediction of progression-free survival time in advanced non-small-cell lung cancer patients after immunotherapy

无线电技术 医学 肺癌 肿瘤科 免疫疗法 内科学 阶段(地层学) 无进展生存期 癌症 放射科 总体生存率 生物 古生物学
作者
Dong Xie,Fangyi Xu,Wenchao Zhu,Cailing Pu,Shaoyu Huang,Kaihua Lou,Yan Wu,Dingpin Huang,Cong He,Hongjie Hu
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:12 被引量:25
标识
DOI:10.3389/fonc.2022.990608
摘要

To assess the validity of pre- and posttreatment computed tomography (CT)-based radiomics signatures and delta radiomics signatures for predicting progression-free survival (PFS) in stage III-IV non-small-cell lung cancer (NSCLC) patients after immune checkpoint inhibitor (ICI) therapy.Quantitative image features of the largest primary lung tumours were extracted on CT-enhanced imaging at baseline (time point 0, TP0) and after the 2nd-3rd immunotherapy cycles (time point 1, TP1). The critical features were selected to construct TP0, TP1 and delta radiomics signatures for the risk stratification of patient survival after ICI treatment. In addition, a prediction model integrating the clinicopathologic risk characteristics and phenotypic signature was developed for the prediction of PFS.The C-index of TP0, TP1 and delta radiomics models in the training and validation cohort were 0.64, 0.75, 0.80, and 0.61, 0.68, 0.78, respectively. The delta radiomics score exhibited good accuracy for distinguishing patients with slow and rapid progression to ICI treatment. The predictive accuracy of the combined prediction model was higher than that of the clinical prediction model in both training and validation sets (P<0.05), with a C-index of 0.83 and 0.70, respectively. Additionally, the delta radiomics model (C-index of 0.86) had a higher predictive accuracy compared to PD-L1 expression (C-index of 0.50) (P<0.0001).The combined prediction model including clinicopathologic characteristics (tumour anatomical classification and brain metastasis) and the delta radiomics signature could achieve the individualized prediction of PFS in ICIs-treated NSCLC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
领导范儿应助K先生采纳,获得10
1秒前
2秒前
杨@@完成签到,获得积分10
2秒前
冷添发布了新的文献求助10
2秒前
无花果应助科研通管家采纳,获得30
3秒前
今后应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
8R60d8应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
李健应助恒杰采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
8R60d8应助科研通管家采纳,获得30
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
慕青应助able采纳,获得10
6秒前
6秒前
6秒前
6秒前
jie酱拌面应助小祖采纳,获得10
7秒前
烟花应助时光采纳,获得18
10秒前
showitt发布了新的文献求助10
10秒前
malistm发布了新的文献求助10
10秒前
10秒前
浮游应助LS采纳,获得10
11秒前
执着幻桃完成签到,获得积分10
11秒前
走走完成签到,获得积分10
11秒前
忧郁的灵松完成签到,获得积分10
13秒前
酷波er应助温存采纳,获得10
15秒前
16秒前
16秒前
16秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4737998
求助须知:如何正确求助?哪些是违规求助? 4090055
关于积分的说明 12651676
捐赠科研通 3799256
什么是DOI,文献DOI怎么找? 2097835
邀请新用户注册赠送积分活动 1123467
科研通“疑难数据库(出版商)”最低求助积分说明 998770