Thyroid Hormone Biomonitoring: A Review on Their Metabolism and Machine-Learning Based Analysis on Effects of Endocrine Disrupting Chemicals

生物监测 内分泌系统 激素 甲状腺 人类健康 甲状腺激素 生物 内分泌学 医学 生理学 环境卫生 生态学
作者
Shijie Chen,M. C. Yu,Yiming Yao,Yongcheng Li,Ana He,Zijun Zhou,Liyang Pan,Nan Xiao,Haining Luo,Hongwen Sun
标识
DOI:10.1021/envhealth.3c00184
摘要

The thyroid is an essential endocrine organ in human body, and thyroid hormones (THs) are pivotal signaling molecules and mediators in various physiological processes. THs, particularly in their free form, play a critical role in regulating body temperature and in the metabolism of lipid and glucose, making the maintenance of TH levels crucial for human health. THs undergo a series of metabolic processes, producing TH metabolites (THMs). THMs are significant in endocrine regulation, such as 3,5-diiothyronine (3,5-T2) and 3-iodothyronamine (3-T1AM), which exhibit activities akin to THs. The production and distribution of THMs are intricately linked to the function of specific organs and tissues, highlighting the need for advanced research into the determination and mechanisms of THMs in body. Exposure to endocrine disrupting chemicals (EDCs) can significantly affect the levels of thyroid stimulating hormone (TSH) and THs. This review utilizes machine learning to analyze epidemiological data, identifying potential EDCs that pose risks of hyperthyroidism and hypothyroidism. Additionally, it delves into the toxicological mechanisms of these EDCs, examining their effects on TH production, binding processes, related proteins, and metabolic enzymes. This approach effectively bridges the gap between epidemiological studies and toxicological researches, laying the groundwork for future research trends. By integrating epidemiological studies with machine learning, this review offers insightful perspectives on the potential risks associated with chemical exposure and underscores the necessity for further research in understanding the impact of EDCs on TH metabolism and TH-related health effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
今后应助Voskov采纳,获得10
5秒前
小小铱完成签到,获得积分10
9秒前
不动的大电视机完成签到,获得积分10
11秒前
虚心的问丝完成签到,获得积分10
12秒前
可爱的函函应助cf2v采纳,获得10
12秒前
13秒前
雨天有伞完成签到,获得积分10
13秒前
科研通AI5应助yah采纳,获得30
14秒前
小姜向阳开完成签到,获得积分10
14秒前
薛栋潮发布了新的文献求助10
18秒前
20秒前
自信的勒发布了新的文献求助10
21秒前
23秒前
Cpp完成签到,获得积分10
26秒前
28秒前
yah发布了新的文献求助30
29秒前
29秒前
雾见春完成签到 ,获得积分10
29秒前
苏苏苏完成签到,获得积分10
29秒前
29秒前
34秒前
淡淡夕阳发布了新的文献求助10
35秒前
35秒前
没头脑完成签到,获得积分10
36秒前
37秒前
打打应助yah采纳,获得10
39秒前
40秒前
绿色心情发布了新的文献求助10
41秒前
43秒前
秋天不回来完成签到,获得积分10
48秒前
AXQ完成签到,获得积分10
48秒前
49秒前
51秒前
54秒前
cf2v完成签到,获得积分0
54秒前
赘婿应助落后醉易采纳,获得10
55秒前
小康找文献完成签到 ,获得积分10
56秒前
Owen应助认真的忆文采纳,获得10
57秒前
害羞便当发布了新的文献求助10
57秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779897
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222437
捐赠科研通 3040465
什么是DOI,文献DOI怎么找? 1668851
邀请新用户注册赠送积分活动 798805
科研通“疑难数据库(出版商)”最低求助积分说明 758563