Fast Adaptation Trajectory Prediction Method Based on Online Multisource Transfer Learning

弹道 学习迁移 适应(眼睛) 计算机科学 人工智能 机器学习 心理学 物理 天文 神经科学
作者
Biao Yang,Jun Zhu,Zhitao Yu,Fucheng Fan,Xiaofeng Liu,Rongrong Ni
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16
标识
DOI:10.1109/tase.2024.3362980
摘要

Conventional deep learning-based trajectory prediction methods always adopt offline training based on trajectory data collected in known scenes. Despite its high prediction accuracy, it is unable to process trajectory data acquired in real-time, making it non-trivial to adapt to unknown scenes. To mitigate the above problem, an online multi-source transfer learning-based pedestrian trajectory predictor, dubbed OMTL-PTP, is proposed to achieve fast adaptation of trajectory prediction. OMTL-PTP resorts to online transfer learning to transfer trajectory knowledge from multiple source domains to the target domain, enabling the model to learn from the new scene and continuously improve its trajectory prediction ability. Concretely, we propose several base learners with external memory modules to preserve source domain trajectory knowledge for online knowledge transfer. A multi-hop attention mechanism is introduced in each learner to handle the future uncertainty of generated trajectories. To fully utilize the knowledge from multiple source domains, OMTL-PTP leverages ensemble learning to transfer knowledge from multiple base learners in the source domains to the online learner and fine-tunes the online learner in the target domain. Specifically, all base learners are combined to update the online learner, improving its ability to process future arriving samples and adapt to unknown scenes quickly. Qualitative and quantitative evaluations on ETH/UCY indicate the effectiveness of OMTL-PTP in online learning, which is beneficial for deploying trajectory prediction methods on intelligent edge devices. The code will be released at https://github.com/zjrcczu/OMTL-PTP after acceptance. Note to Practitioners —This paper is motivated by the challenge of online sustained trajectory prediction for unmanned autonomous agents, but it also applies to other trajectory prediction tasks, such as intelligent monitoring. Existing approaches always collect trajectory data from different scenes for training, making the model generalize to other scenarios. However, they may suffer from performance degradation since they cannot learn trajectory knowledge from unknown scenes. This paper suggests a new approach by transferring trajectory knowledge from known scenes to unknown scenes and gradually learning from unknown scenes, inspired by online transfer learning. In this paper, we propose a trajectory predictor based on a memory network and introduce the multi-hop attention mechanism to mitigate future uncertainty of trajectory prediction. We then show how the external memory can preserve trajectory knowledge, which facilitates transferring knowledge from source domains to the target domain. Afterward, we train an online trajectory predictor based on online multi-source transfer learning, improving the generalization and adaptability of trajectory prediction models in unknown scenes and facilitating deploying trajectory prediction models in edge devices. This method also applies to other neural network-based regression tasks that require online sustained learning. In future research, we will improve the trajectory prediction performance while maintaining the online learning ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
太阳发布了新的文献求助10
1秒前
zibizheng完成签到,获得积分10
1秒前
1218完成签到,获得积分10
2秒前
BigBadWolf发布了新的文献求助10
2秒前
lalalala发布了新的文献求助10
2秒前
3秒前
娇气的问雁完成签到,获得积分10
4秒前
5秒前
5秒前
Hello应助Komorebi采纳,获得10
5秒前
chestnut完成签到,获得积分10
5秒前
5秒前
kskd发布了新的文献求助10
6秒前
136541564发布了新的文献求助10
6秒前
小科完成签到,获得积分10
7秒前
7秒前
嘎嘎完成签到,获得积分20
8秒前
7298682发布了新的文献求助10
9秒前
牛马日常完成签到,获得积分10
9秒前
小明发布了新的文献求助20
10秒前
11秒前
chuixing发布了新的文献求助10
11秒前
科目三应助YOLO采纳,获得10
11秒前
儒雅新波发布了新的文献求助10
11秒前
Ccccsa完成签到,获得积分20
12秒前
12秒前
科研通AI5应助kb采纳,获得10
14秒前
15秒前
16秒前
17秒前
云烟成雨发布了新的文献求助10
17秒前
bear完成签到,获得积分20
17秒前
QQQ完成签到,获得积分10
19秒前
20秒前
20秒前
chen完成签到,获得积分10
20秒前
AIMS完成签到,获得积分10
21秒前
星星的梦发布了新的文献求助10
22秒前
Lee发布了新的文献求助10
22秒前
chuixing完成签到,获得积分10
23秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
English language teaching materials : theory and practice 200
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835595
求助须知:如何正确求助?哪些是违规求助? 3377959
关于积分的说明 10501323
捐赠科研通 3097529
什么是DOI,文献DOI怎么找? 1705876
邀请新用户注册赠送积分活动 820756
科研通“疑难数据库(出版商)”最低求助积分说明 772226