Fast Adaptation Trajectory Prediction Method Based on Online Multisource Transfer Learning

弹道 学习迁移 适应(眼睛) 计算机科学 人工智能 机器学习 心理学 物理 天文 神经科学
作者
Biao Yang,Jun Zhu,Zhitao Yu,Fucheng Fan,Xiaofeng Liu,Rongrong Ni
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16
标识
DOI:10.1109/tase.2024.3362980
摘要

Conventional deep learning-based trajectory prediction methods always adopt offline training based on trajectory data collected in known scenes. Despite its high prediction accuracy, it is unable to process trajectory data acquired in real-time, making it non-trivial to adapt to unknown scenes. To mitigate the above problem, an online multi-source transfer learning-based pedestrian trajectory predictor, dubbed OMTL-PTP, is proposed to achieve fast adaptation of trajectory prediction. OMTL-PTP resorts to online transfer learning to transfer trajectory knowledge from multiple source domains to the target domain, enabling the model to learn from the new scene and continuously improve its trajectory prediction ability. Concretely, we propose several base learners with external memory modules to preserve source domain trajectory knowledge for online knowledge transfer. A multi-hop attention mechanism is introduced in each learner to handle the future uncertainty of generated trajectories. To fully utilize the knowledge from multiple source domains, OMTL-PTP leverages ensemble learning to transfer knowledge from multiple base learners in the source domains to the online learner and fine-tunes the online learner in the target domain. Specifically, all base learners are combined to update the online learner, improving its ability to process future arriving samples and adapt to unknown scenes quickly. Qualitative and quantitative evaluations on ETH/UCY indicate the effectiveness of OMTL-PTP in online learning, which is beneficial for deploying trajectory prediction methods on intelligent edge devices. The code will be released at https://github.com/zjrcczu/OMTL-PTP after acceptance. Note to Practitioners —This paper is motivated by the challenge of online sustained trajectory prediction for unmanned autonomous agents, but it also applies to other trajectory prediction tasks, such as intelligent monitoring. Existing approaches always collect trajectory data from different scenes for training, making the model generalize to other scenarios. However, they may suffer from performance degradation since they cannot learn trajectory knowledge from unknown scenes. This paper suggests a new approach by transferring trajectory knowledge from known scenes to unknown scenes and gradually learning from unknown scenes, inspired by online transfer learning. In this paper, we propose a trajectory predictor based on a memory network and introduce the multi-hop attention mechanism to mitigate future uncertainty of trajectory prediction. We then show how the external memory can preserve trajectory knowledge, which facilitates transferring knowledge from source domains to the target domain. Afterward, we train an online trajectory predictor based on online multi-source transfer learning, improving the generalization and adaptability of trajectory prediction models in unknown scenes and facilitating deploying trajectory prediction models in edge devices. This method also applies to other neural network-based regression tasks that require online sustained learning. In future research, we will improve the trajectory prediction performance while maintaining the online learning ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尺素寸心发布了新的文献求助10
1秒前
Jara完成签到 ,获得积分10
2秒前
5秒前
三颗板牙发布了新的文献求助10
6秒前
2Cd完成签到,获得积分10
8秒前
8秒前
YUMI发布了新的文献求助10
10秒前
陶醉大侠完成签到,获得积分10
10秒前
研友_VZG7GZ应助nina采纳,获得10
11秒前
huohuo发布了新的文献求助10
11秒前
默苍离倒拔琉璃树完成签到,获得积分10
12秒前
汉堡包应助友好的寒云采纳,获得10
14秒前
grace135完成签到,获得积分10
16秒前
16秒前
OldFly完成签到,获得积分10
19秒前
24秒前
26秒前
zuolan完成签到,获得积分10
27秒前
ll应助恋雅颖月采纳,获得10
27秒前
28秒前
28秒前
28秒前
范医生01完成签到,获得积分10
31秒前
31秒前
知来者发布了新的文献求助80
31秒前
解语花发布了新的文献求助30
33秒前
33秒前
听风者发布了新的文献求助10
34秒前
MaRin发布了新的文献求助10
34秒前
35秒前
36秒前
ji发布了新的文献求助10
36秒前
最牛的kangkang完成签到,获得积分10
38秒前
^O^完成签到,获得积分10
39秒前
40秒前
orixero应助科研通管家采纳,获得10
40秒前
归尘应助科研通管家采纳,获得100
40秒前
佳佳应助科研通管家采纳,获得10
40秒前
40秒前
香蕉觅云应助科研通管家采纳,获得10
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967149
求助须知:如何正确求助?哪些是违规求助? 3512481
关于积分的说明 11163469
捐赠科研通 3247417
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804450