IMFF-Net: An integrated multi-scale feature fusion network for accurate retinal vessel segmentation from fundus images

计算机科学 人工智能 眼底(子宫) 分割 比例(比率) 特征(语言学) 视网膜 融合 计算机视觉 模式识别(心理学) 眼科 地图学 地理 医学 语言学 哲学
作者
Mingtao Liu,Yunyu Wang,Lei Wang,Shunbo Hu,Xing Wang,Qingman Ge
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:91: 105980-105980 被引量:9
标识
DOI:10.1016/j.bspc.2024.105980
摘要

Extracting vascular structures from retinal fundus images plays a critical role in the early diagnosis and long-term treatment of ophthalmic diseases. Traditional manual segmentation of retinal vessels is a time-consuming process that demands a high level of expertise. In recent years, deep learning has made significant strides in retinal vessel segmentation, but it still faces certain challenges in fine vessel segmentation, such as the loss of spatial information resulting from multi-level feature extraction and the blurring of fine structural segmentation. To address these issues, we propose a multi-scale feature fusion segmentation network known as IMFF-Net. Specifically, we propose two fusion blocks in the IMFF-Net. Firstly, an Attention Pooling Feature Fusion (APF) block is proposed, which consists of Max Pooling, and Average Pooling and incorporates the SE block. This design effectively mitigates the problem of spatial information loss stemming from multiple pooling operations. Secondly, the Upsampling and Downsampling Feature Fusion block (UDFF) is proposed to weightedly merge the feature maps of each downsampling with the upsampling feature maps, thereby facilitating the precise segmentation of fine structures. To validate the performance of the proposed IMFF-Net, we conducted experiments on three retinal blood vessel segmentation datasets: DRIVE, STARE, and CHASE_DB1. IMFF-Net achieved outstanding results on the test set of these three public datasets with accuracies of 0.9621, 0.9707, and 0.9730, and sensitivities of 0.8575, 0.8634, and 0.8048, respectively. These results demonstrate the superior performance of IMFF-Net compared to the backbone network and other state-of-the-art methods. Our code is available at: https://github.com/wangyunyuwyy/IMFF-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orangel完成签到,获得积分10
2秒前
zzz完成签到 ,获得积分10
3秒前
3秒前
李健的小迷弟应助hehehe采纳,获得10
4秒前
LiYJS发布了新的文献求助10
4秒前
Gemma发布了新的文献求助10
4秒前
群青完成签到,获得积分10
4秒前
6秒前
6秒前
群青发布了新的文献求助10
7秒前
科研通AI5应助yinhe028采纳,获得10
8秒前
8秒前
海岢完成签到,获得积分10
8秒前
quantumdot完成签到 ,获得积分10
10秒前
11秒前
11秒前
会飞的猪完成签到,获得积分10
11秒前
12秒前
123发布了新的文献求助10
12秒前
AllWeKnow完成签到,获得积分10
13秒前
不敢装睡完成签到,获得积分10
13秒前
爽肤水发布了新的文献求助10
13秒前
zcj完成签到,获得积分10
14秒前
Akim应助FCL采纳,获得10
15秒前
科研通AI5应助Ruoru采纳,获得10
16秒前
上官若男应助Ruoru采纳,获得10
16秒前
orixero应助Ruoru采纳,获得10
16秒前
Owen应助Ruoru采纳,获得10
16秒前
科研通AI2S应助Ruoru采纳,获得10
16秒前
科研通AI5应助Ruoru采纳,获得10
16秒前
hehehe发布了新的文献求助10
16秒前
ZhiyunXu2012完成签到 ,获得积分10
17秒前
Synan完成签到,获得积分10
18秒前
白青完成签到,获得积分10
19秒前
20秒前
羊白玉完成签到 ,获得积分10
20秒前
斯文败类应助jam采纳,获得30
21秒前
爽肤水完成签到,获得积分20
21秒前
ArmadilloLucky完成签到,获得积分10
22秒前
南瓜气气发布了新的文献求助10
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793534
求助须知:如何正确求助?哪些是违规求助? 3338480
关于积分的说明 10289803
捐赠科研通 3054952
什么是DOI,文献DOI怎么找? 1676215
邀请新用户注册赠送积分活动 804255
科研通“疑难数据库(出版商)”最低求助积分说明 761812