阳极
锂(药物)
材料科学
法拉第效率
沉积(地质)
基质(水族馆)
化学工程
纳米技术
金属
金属锂
离子键合
离子
电极
冶金
化学
物理化学
医学
古生物学
海洋学
有机化学
工程类
沉积物
地质学
生物
内分泌学
作者
Jiajie Pan,Kaixiang Shi,Hao Wu,Junhao Li,Rui Zhang,Quanbing Liu,Zhenxing Liang
标识
DOI:10.1002/aenm.202302862
摘要
Abstract Due to the sterile lithium affinity and poor Li + regulation ability, lithium metal tends to deposit on the top of substrate materials, which lowers the space utilization and deteriorates the dendrites growth, further increasing the risk of short circuits. It is necessary to guide lithium deposition and adjust Li + flux at the base of substrate toward alleviating those issues of lithium metal anodes (LMAs). Herein, a dredging and capturing dual‐gradient framework is conveniently fabricated toward inducing the Li + migration and deposition. The dual‐gradient framework combined with upper Ni 3 S 2 nanowires with lower Li + migration barrier and bottom Ni 2 P nanowires with stronger Li affinity, such reasonable distribution of components conquers the ionic concentration gradient to acquire a “step‐packed” lithium deposition mode. Moreover, the in situ formation of Li 2 S/Li 3 P‐enriched SEI further promotes Li + transport to the interior framework. Consequently, a high average Coulombic efficiency of 98% over 230 cycles and a lifespan of 180 h (10 mA cm −2 , 5 mAh cm −2 ) are achieved. The LiFePO 4 full cells also exhibit a considerable capacity retention. This work provides a feasible strategy of step‐packing lithium deposition for significant framework design insight to boost practical lithium metal batteries (LMBs) development.
科研通智能强力驱动
Strongly Powered by AbleSci AI