Machine learning aided process design of Fe-Cr-Ni-Al/Ti multi-principal element alloys for excellent mechanical properties

极限抗拉强度 材料科学 延伸率 韧性 微观结构 过程(计算) 工作(物理) 实验设计 断裂韧性 机械工程 复合材料 计算机科学 数学 工程类 统计 操作系统
作者
Kang Xu,Li Zhang,Chunyan Bai,Jian Tu,Jinru Luo
出处
期刊:Computational Materials Science [Elsevier BV]
卷期号:232: 112660-112660 被引量:2
标识
DOI:10.1016/j.commatsci.2023.112660
摘要

Fe-Cr-Ni-Al/Ti multi-principal element alloys (MPEAs) with the good mechanical properties were designed by utilizing machine learning (ML) methods in our previous work. It can be noted that the post-processing (thermo-mechanical treatments, TMT) can tailor microstructures of the designed MPEAs with an aim to further obtain excellent mechanical properties. However, for a novel MPEA, determining the optimal post-processing parameters often requires time-consuming and laborious experiments due to the absence of existing precedents. In this work, we collected approximately 400 sets of mechanical properties data of MPEAs. The various feature selection methods were employed to train ML models for the process optimization of MPEAs. In addition, two input strategies were compared to offer a simplified approach for model inputs: one considering all process features and the other focusing solely on TMT process. The results showed that the difference in model accuracy between the two input strategies was minimal, indicating a strong possibility to simplify the ML model by disregarding specific processing features. Based on the trained models, we conducted optimization design for the TMTed parameters of Fe-Cr-Ni-Al/Ti MPEAs. The as-TMTed (Fe10Cr35Ni55)95Al5 and (Fe10Cr35Ni55)97Al2Ti1 samples demonstrated a balance between strength and toughness, with yield strength (YS) and ultimate tensile strength (UTS) values of approximately 600 MPa and 900 MPa, respectively, and a fracture elongation (FE) exceeding 30 %. As compared to samples without the TMT process in our previous work, the as-TMTed samples demonstrated a significant increase in YS and UTS, while only a certain loss in FE. This work confirmed the viability of ML-assisted efficient design for post-processing treatment in novel MPEAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助沐风采纳,获得10
1秒前
regene发布了新的文献求助10
2秒前
研ZZ完成签到,获得积分10
2秒前
Sandy完成签到,获得积分10
3秒前
嘉子完成签到 ,获得积分10
3秒前
篮孩子完成签到,获得积分10
3秒前
懦弱的雪兰给钉钉的求助进行了留言
4秒前
taotao完成签到 ,获得积分10
5秒前
英勇海完成签到 ,获得积分10
6秒前
从容松弛完成签到 ,获得积分10
6秒前
XIEMIN完成签到,获得积分10
7秒前
老衲完成签到,获得积分10
8秒前
小白完成签到,获得积分10
8秒前
刘雨森完成签到,获得积分10
8秒前
王饱饱完成签到 ,获得积分10
9秒前
安好完成签到,获得积分10
10秒前
regene完成签到,获得积分10
11秒前
自由的中蓝完成签到 ,获得积分10
12秒前
zxb完成签到,获得积分10
13秒前
徐开心完成签到,获得积分10
15秒前
DaDA完成签到 ,获得积分10
15秒前
芋圆完成签到,获得积分10
15秒前
张一完成签到,获得积分10
15秒前
加载文献别卡了完成签到,获得积分10
16秒前
17秒前
逗小豆完成签到 ,获得积分10
18秒前
肥肥熊完成签到,获得积分10
19秒前
陈飞飞完成签到,获得积分10
19秒前
小玲子完成签到 ,获得积分10
21秒前
小许完成签到 ,获得积分10
21秒前
拼搏亦松完成签到,获得积分10
22秒前
陈飞飞发布了新的文献求助10
22秒前
可露丽完成签到,获得积分10
22秒前
qingtian414发布了新的文献求助20
24秒前
8R60d8应助刘子豪采纳,获得10
24秒前
谨慎秋珊完成签到 ,获得积分10
25秒前
糖豆子完成签到,获得积分10
25秒前
26秒前
务实雁梅完成签到,获得积分10
27秒前
丢硬币的小孩完成签到,获得积分10
28秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Power of High-Throughput Experimentation: General Topics and Enabling Technologies for Synthesis and Catalysis (Volume 1) 200
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827391
求助须知:如何正确求助?哪些是违规求助? 3369719
关于积分的说明 10456949
捐赠科研通 3089369
什么是DOI,文献DOI怎么找? 1699854
邀请新用户注册赠送积分活动 817542
科研通“疑难数据库(出版商)”最低求助积分说明 770253