Machine Learning for Engineering Meta‐Atoms with Tailored Multipolar Resonances

物理 工程物理
作者
Wenhao Li,Hooman Barati Sedeh,Dmitrii Tsvetkov,Willie J. Padilla,Simiao Ren,Jordan M. Malof,Natalia M. Litchinitser
出处
期刊:Laser & Photonics Reviews [Wiley]
卷期号:18 (7) 被引量:8
标识
DOI:10.1002/lpor.202300855
摘要

Abstract In the rapidly developing field of nanophotonics, machine learning (ML) methods facilitate the multi‐parameter optimization processes and serve as a valuable technique in tackling inverse design challenges by predicting nanostructure designs that satisfy specific optical property criteria. However, while considerable efforts have been devoted to applying ML for designing the overall spectral response of photonic nanostructures, often without elucidating the underlying physical mechanisms, physics‐based models remain largely unexplored. Here, physics‐empowered forward and inverse ML models to design dielectric meta‐atoms with controlled multipolar responses are introduced. By utilizing the multipole expansion theory, the forward model efficiently predicts the scattering response of meta‐atoms with diverse shapes and the inverse model designs meta‐atoms that possess the desired multipole resonances. Implementing the inverse design model, uniquely shaped meta‐atoms with enhanced higher‐order magnetic resonances and those supporting a super‐scattering regime of light‐matter interactions resulting in nearly five‐fold enhancement of scattering beyond the single‐channel limit are designed. Finally, an ML model to predict the wavelength‐dependent electric field distribution inside and near the meta‐atom is developed. The proposed ML based models will likely facilitate uncovering new regimes of linear and nonlinear light‐matter interaction at the nanoscale as well as a versatile toolkit for nanophotonic design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助一个千年猪妖采纳,获得10
1秒前
eeeee发布了新的文献求助10
1秒前
Hello应助哈哈哈哈采纳,获得10
1秒前
2秒前
hiipaige发布了新的文献求助30
2秒前
4秒前
5秒前
牛老大发布了新的文献求助10
5秒前
跳跃毒娘发布了新的文献求助10
6秒前
7秒前
7秒前
9秒前
12秒前
南风发布了新的文献求助10
12秒前
催催催发布了新的文献求助10
13秒前
小可爱发布了新的文献求助10
13秒前
15秒前
我是老大应助小丸子采纳,获得10
15秒前
16秒前
在水一方应助刘叶采纳,获得10
16秒前
斯文败类应助hiipaige采纳,获得10
18秒前
18秒前
哈哈哈哈发布了新的文献求助10
19秒前
12458发布了新的文献求助10
20秒前
希望天下0贩的0应助xsc采纳,获得10
20秒前
催催催完成签到,获得积分10
21秒前
jin发布了新的文献求助10
23秒前
南风完成签到,获得积分10
23秒前
24秒前
24秒前
to高坚果发布了新的文献求助10
24秒前
26秒前
科研通AI5应助碎冰蓝采纳,获得10
27秒前
方子关注了科研通微信公众号
27秒前
荧荧荧完成签到,获得积分20
27秒前
青树柠檬完成签到 ,获得积分10
29秒前
学学术术小小白白完成签到,获得积分10
30秒前
yissl发布了新的文献求助10
30秒前
黄豆发布了新的文献求助10
31秒前
yc发布了新的文献求助10
31秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802431
求助须知:如何正确求助?哪些是违规求助? 3348058
关于积分的说明 10336202
捐赠科研通 3063960
什么是DOI,文献DOI怎么找? 1682338
邀请新用户注册赠送积分活动 808052
科研通“疑难数据库(出版商)”最低求助积分说明 763997