SACINet: Semantic-Aware Cross-Modal Interaction Network for Real-Time 3D Object Detection

计算机科学 语义学(计算机科学) 水准点(测量) 特征(语言学) 人工智能 情态动词 特征提取 成对比较 分割 目标检测 钥匙(锁) 计算机视觉 模式识别(心理学) 语言学 哲学 化学 计算机安全 大地测量学 高分子化学 程序设计语言 地理
作者
Ying Yang,Hui Yin,Aixin Chong,Jin Wan,Qing-Yi Liu
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:1
标识
DOI:10.1109/tiv.2023.3348099
摘要

LiDAR-Camera fusion-based 3D object detection is one of the main visual perception tasks in autonomous driving, facing the challenges of small targets and occlusions. Image semantics are beneficial for these issues, yet most existing methods applied semantics only in the cross-modal fusion stage to compensate for point geometric features, where the advantages of semantic information are not effectively explored. Further, the increased complexity of the network caused by introducing semantics is also a major obstacle to real-time. In this paper, we propose a Semantic-Aware Cross-modal Interaction Network(SACINet) to achieve real-time 3D object detection, which introduces high-level semantics into both key stages of image feature extraction and cross-modal fusion. Specifically, we design a Lightweight Semantic-aware Image Feature Extractor(LSIFE) to enhance semantic samplings of objects while reducing numerous parameters. Additionally, a Semantic-Modulated Cross-modal Interaction Mechanism(SMCIM) is proposed to stress semantic details in cross-modal fusion. This mechanism conducts a pairwise interactive fusion among geometric features, semantic-aware point-wise image features, and semantic-aware point-wise segmentation features by the designed Conditions Generation Network(CGN) and Semantic-Aware Point-wise Feature Modulation(SAPFM). Ultimately, we construct a real-time(25.2fps) 3D detector with minor parameters(23.79 MB), which can better achieve the trade-off between accuracy and efficiency. Comprehensive experiments on the KITTI benchmark illustrate that SACINet is effective for real-time 3D detection, especially on small and severely occluded targets. Further, we conduct semantic occupancy perception experiments on the latest nuScenes-Occupancy benchmark, which verifies the effectiveness of SMCIM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Migrol完成签到,获得积分10
1秒前
victory_liu完成签到,获得积分10
1秒前
ada完成签到,获得积分10
2秒前
123完成签到,获得积分10
2秒前
3秒前
忆之完成签到,获得积分10
5秒前
7秒前
kiwi完成签到,获得积分10
7秒前
迷路谷蓝完成签到,获得积分10
9秒前
等待盼雁完成签到,获得积分10
10秒前
小猫来啦完成签到,获得积分10
10秒前
丢硬币的小孩完成签到,获得积分10
15秒前
拓跋傲薇完成签到,获得积分10
20秒前
沉默傲芙完成签到,获得积分0
20秒前
20秒前
21秒前
21秒前
grace完成签到 ,获得积分10
22秒前
揽星完成签到 ,获得积分10
23秒前
jianglili完成签到,获得积分10
25秒前
乔心发布了新的文献求助10
26秒前
小花排草发布了新的文献求助10
26秒前
嘻嘻哈哈完成签到,获得积分10
27秒前
最好的完成签到,获得积分10
29秒前
王正浩完成签到 ,获得积分10
37秒前
jessie完成签到,获得积分10
41秒前
41秒前
西西弗完成签到 ,获得积分10
47秒前
安静依琴发布了新的文献求助10
48秒前
雪白溪流完成签到 ,获得积分10
48秒前
Vegeta完成签到 ,获得积分10
50秒前
由由完成签到 ,获得积分10
51秒前
wangdao完成签到,获得积分10
51秒前
刘翘铭完成签到,获得积分10
54秒前
发嗲的雨筠完成签到,获得积分10
55秒前
fengzi完成签到 ,获得积分10
1分钟前
he完成签到 ,获得积分10
1分钟前
麻辣牛蛙完成签到,获得积分10
1分钟前
Derek完成签到,获得积分0
1分钟前
onw完成签到,获得积分10
1分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801092
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329787
捐赠科研通 3063102
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726