Self-supervised Edge Structure Learning for Multi-view Stereo and Parallel Optimization

计算机科学 人工智能 GSM演进的增强数据速率 计算机视觉 计算机图形学(图像)
作者
Li Pan,Shiqian Wu,Xitie Zhang,Yuxin Peng,Boyang Zhang,B. Wang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 448-461
标识
DOI:10.1007/978-3-031-53311-2_33
摘要

Recent studies have witnessed that many self-supervised methods obtain clear progress on the multi-view stereo (MVS). However, existing methods ignore the edge structure information of the reconstructed target, which includes the outer silhouette and the edge information of the internal structure. This may lead to less satisfactory edges and completeness of the reconstruction result. To solve this problem, we propose an extractor for extracting edge structure maps, and we innovatively design an edge structure Loss to constrain the network to pay more attention to edge structure features of the reference view to improve the texture details of the reconstruction results. Specially, we utilize the idea of constructing cost volume in multi-view stereo and warp the edge structure map of the source view to the reference view to provide reliable self-supervision. In addition, we design a masking mechanism that combines local and global properties, which ensures robustness and improves the reconstruction completeness of the model for complex samples. Furthermore, we adopt an effective parallel acceleration approach to improve the training speed and reconstruction efficiency. Extensive experiments on the DTU and Tanks &Temples benchmarks demonstrate that our method improves both accuracy and completeness in comparison with other unsupervised work. In addition, our parallel method improves efficiency while ensuring accuracy. The code will be published.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自自自在完成签到,获得积分20
1秒前
1秒前
平淡的翠霜完成签到,获得积分10
2秒前
2秒前
陈肖楠完成签到,获得积分10
2秒前
2秒前
yangjinru完成签到 ,获得积分10
3秒前
3秒前
慕青应助兰兰猪头采纳,获得10
3秒前
万万发布了新的文献求助10
3秒前
华仔应助hyr采纳,获得10
4秒前
maodou发布了新的文献求助10
4秒前
Oil完成签到,获得积分10
4秒前
4秒前
HJC完成签到,获得积分10
5秒前
5秒前
6秒前
充电宝应助苗条辣条采纳,获得10
6秒前
boboking发布了新的文献求助10
6秒前
lin发布了新的文献求助10
7秒前
peanuttt完成签到 ,获得积分10
7秒前
机灵柚子发布了新的文献求助10
8秒前
8秒前
馋猫发布了新的文献求助10
8秒前
8秒前
所所应助maodou采纳,获得30
9秒前
米里迷路发布了新的文献求助10
9秒前
9秒前
9秒前
搜集达人应助100采纳,获得10
9秒前
脑洞疼应助ziyue采纳,获得10
10秒前
Jasper应助yyc采纳,获得10
10秒前
852应助peekaboo采纳,获得10
11秒前
11秒前
李琛发布了新的文献求助10
11秒前
大模型应助zzululu2024采纳,获得10
12秒前
苹果发布了新的文献求助10
12秒前
乐乐应助酷小裤采纳,获得10
13秒前
飞羽发布了新的文献求助10
13秒前
我是老大应助桂花酒酿采纳,获得10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786934
求助须知:如何正确求助?哪些是违规求助? 3332593
关于积分的说明 10256397
捐赠科研通 3047840
什么是DOI,文献DOI怎么找? 1672734
邀请新用户注册赠送积分活动 801549
科研通“疑难数据库(出版商)”最低求助积分说明 760271