An efficient and accurate surface defect detection method for quality supervision of wood panels

瓶颈 计算机科学 联营 特征(语言学) 特征提取 人工智能 曲面(拓扑) 木材加工 模式识别(心理学) 工程类 机械工程 嵌入式系统 数学 几何学 哲学 语言学
作者
Zhihao Yi,Lufeng Luo,Qinghua Lu,Mingyou Chen,Wenbo Zhu,Yunzhi Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (5): 055209-055209 被引量:3
标识
DOI:10.1088/1361-6501/ad26c9
摘要

Abstract The wood panel processing sector is integral to the landscape of industrial manufacturing, and automated detection of wood panel surface defects has become an important guarantee for improving the efficiency and quality of processing production. However, due to the diverse scales and shapes of wood panel surface defects, as well as their complex and varied colors and texture characteristics, the efforts to efficiently and accurately detect surface defects in wood panels through existing methods have fallen short. Therefore, the paper proposes an enhanced YOLOx-tiny deep learning network for wood panel surface defect detection. We introduce new modules multi-pooling feature fusion module and comprehensive feature extraction module, instead of the original SPP and Bottleneck modules to enhance key feature extraction and reduce the number of computational parameters. The experimental results conducted on the self-constructed wood panel surface defects dataset show that the mAP of our proposed method is 95.01%, which is 9.58% higher than the original YOLOx-tiny network model, and the defects recall is 91.46%, which is 13.21% higher compared to the original network. Meanwhile, the method is able to reduce 12.22% of computational parameters, which effectively improves the efficiency of the detection of surface defects on wood panels. In summary, the proposed intelligent surface defect detection approach for wood panels, which utilizes an enhanced YOLOx-tiny deep learning network, has yielded notable outcomes in enhancing both accuracy and efficiency. This method holds significant practical relevance for the wood panel manufacturing sector, offering the potential to enhance both production efficiency and quality. It also explores the automation and intelligent technology in the process of man-made board processing, which provides a valuable reference for the research in related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
princesun083完成签到,获得积分10
1秒前
非羽完成签到,获得积分10
1秒前
洁净方盒完成签到,获得积分10
1秒前
显隐发布了新的文献求助10
2秒前
显隐发布了新的文献求助10
2秒前
显隐发布了新的文献求助10
2秒前
2秒前
显隐发布了新的文献求助10
3秒前
不安的夜柳完成签到,获得积分10
3秒前
显隐发布了新的文献求助10
3秒前
倪瑞恒发布了新的文献求助10
4秒前
4秒前
洁净方盒发布了新的文献求助10
4秒前
gaohui完成签到,获得积分10
4秒前
Wakey发布了新的文献求助10
4秒前
佳妮完成签到,获得积分10
5秒前
懂得珍惜完成签到,获得积分20
5秒前
CodeCraft应助¥#¥-11采纳,获得10
6秒前
6秒前
efine完成签到,获得积分10
7秒前
等待冬亦应助Inori采纳,获得10
7秒前
8秒前
顶级洋仔完成签到,获得积分10
8秒前
8秒前
炙热的寒香完成签到,获得积分10
9秒前
9秒前
酷波er应助倪瑞恒采纳,获得10
9秒前
英姑应助Sky我的小清新采纳,获得10
10秒前
冯尔蓝完成签到,获得积分10
11秒前
orixero应助gyhmm采纳,获得10
11秒前
12秒前
权灵萱发布了新的文献求助10
12秒前
杭ge发布了新的文献求助10
13秒前
13秒前
充电宝应助1区冲啊采纳,获得10
14秒前
14秒前
冯尔蓝发布了新的文献求助10
15秒前
魚子应助简.....采纳,获得10
16秒前
Wakey完成签到,获得积分10
17秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Single Element Semiconductors: Properties and Devices 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
English language teaching materials : theory and practice 200
Parallel Optimization 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835549
求助须知:如何正确求助?哪些是违规求助? 3377872
关于积分的说明 10500941
捐赠科研通 3097454
什么是DOI,文献DOI怎么找? 1705830
邀请新用户注册赠送积分活动 820717
科研通“疑难数据库(出版商)”最低求助积分说明 772219