已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

FL-OTCSEnc: Towards secure federated learning with deep compressed sensing

压缩传感 计算机科学 深度学习 人工智能
作者
Lenan Wu,Yaochu Jin,Yuping Yan,Kuangrong Hao
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:291: 111534-111534
标识
DOI:10.1016/j.knosys.2024.111534
摘要

In recent years, federated learning has made significant progress in preserving data privacy. In this paradigm, clients train local models without sharing their raw data, thereby substantially mitigating the vulnerability to private data exposure. However, it is still possible to infer clients' raw data by leveraging the gradient parameters exchanged between the clients and the server. To address this problem, this paper proposes a novel algorithm that introduces deep compressed sensing into federated learning to support one time encryption, called FL-OTCSEnc, to secure the communication data exchanged between the clients and the server. The process starts by creating a dataset of deep learning model parameters and training a system for both encryption and decryption using deep compressed sensing. This system is then used to secure the communication between clients and the server in federated learning, by encrypting and decrypting the data exchanged. To enhance the security of the proposed algorithm, we introduce an assessment method for evaluating the security level of the clients, facilitating the selection of suitable candidates for deployment within distributed training encryption and decryption models that are updated in real time. To enhance the accuracy of the decrypted deep network model, we introduce a tandem loss function in the training process. Moreover, this paper proves that the proposed end-to-end encryption method satisfies additive homomorphic encryption properties. Extensive experiments demonstrate that the deep compressed sensing encryption in federated learning achieves promising results without increasing the computational complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
化学发布了新的文献求助10
2秒前
6秒前
斯文败类应助化学采纳,获得10
6秒前
7秒前
10秒前
Pauline完成签到 ,获得积分10
10秒前
11秒前
Truman发布了新的文献求助10
12秒前
apckkk完成签到 ,获得积分10
12秒前
zf2023完成签到,获得积分10
13秒前
dengdengdeng发布了新的文献求助10
15秒前
ddd完成签到,获得积分10
17秒前
19秒前
隐形曼青应助暮然采纳,获得10
20秒前
dengdengdeng完成签到,获得积分10
21秒前
24秒前
赵赵发布了新的文献求助10
24秒前
孤芳自赏IrisKing完成签到 ,获得积分10
25秒前
27秒前
李健应助Navial30采纳,获得10
28秒前
leave完成签到 ,获得积分0
30秒前
暮然发布了新的文献求助10
32秒前
单薄绿竹完成签到,获得积分10
34秒前
我是老大应助realha采纳,获得10
35秒前
SKY发布了新的文献求助10
36秒前
科研通AI6应助科研通管家采纳,获得10
37秒前
Hello应助科研通管家采纳,获得10
37秒前
Ava应助科研通管家采纳,获得10
37秒前
赘婿应助科研通管家采纳,获得10
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
37秒前
搜集达人应助科研通管家采纳,获得10
37秒前
FashionBoy应助科研通管家采纳,获得10
38秒前
科研通AI6应助科研通管家采纳,获得10
38秒前
39秒前
Navial30发布了新的文献求助10
43秒前
Anlocia完成签到 ,获得积分10
43秒前
木又完成签到,获得积分10
44秒前
47秒前
yuhong发布了新的文献求助10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476217
求助须知:如何正确求助?哪些是违规求助? 4577883
关于积分的说明 14363077
捐赠科研通 4505789
什么是DOI,文献DOI怎么找? 2468870
邀请新用户注册赠送积分活动 1456491
关于科研通互助平台的介绍 1430126