Lithium-Induced Oxygen Vacancies in MnO2@MXene for High-Performance Zinc–Air Batteries

材料科学 氧气 锂(药物) 化学工程 无机化学 冶金 医学 化学 有机化学 工程类 内分泌学
作者
Qing Sun,Ziyang Guo,Tie Shu,Yongfei Li,Kailin Li,Jintao Zhang,Liang Li,Jiaoyi Ning,Ke Yao
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (10): 12781-12792
标识
DOI:10.1021/acsami.3c18248
摘要

The traditional methods for creating oxygen vacancies in materials present several challenges and limitations, such as high preparation temperatures, limited oxygen vacancy generation, and morphological destruction, which hinder the application of transition metal oxides in the field of zinc-air batteries (ZABs). In order to address these limitations, we have introduced a pioneering lithium reduction strategy for generating oxygen vacancies in δ-MnO2@MXene composite materials. This strategy stands out for its simplicity of implementation, applicability at room temperature, and preservation of the material's structural integrity. This research demonstrates that aqueous Ov-MnO2@MXene-5, with introduced oxygen vacancies, exhibits an outstanding oxygen reduction reaction (ORR) activity with an ORR half-wave potential reaching 0.787 V. DFT calculations have demonstrated that the enhanced activity could be attributed to adjustments in the electronic structure and alterations in adsorption bond lengths. These adjustments result from the introduction of oxygen vacancies, which in turn promote electron transport and catalytic activity. In the context of zinc-air batteries, cells with Ov-MnO2@MXene-5 as the air cathode exhibit outstanding performance, featuring a significantly improved maximum power density (198.3 mW cm-2) and long-term cycling stability. Through the innovative strategy of introducing oxygen vacancies, this study has successfully enhanced the electrochemical catalytic performance of MnO2, overcoming the limitations associated with traditional methods for creating oxygen vacancies. Consequently, this research opens up new avenues and directions for nonprecious metal catalyst application in ZABs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助麻明英采纳,获得10
1秒前
无奈满天完成签到,获得积分10
1秒前
1秒前
bkagyin应助hhh采纳,获得10
3秒前
多余的话完成签到,获得积分10
3秒前
浪浪发布了新的文献求助10
4秒前
斯文败类应助猹理斯采纳,获得10
4秒前
聪慧的梦安完成签到,获得积分10
5秒前
zilla完成签到,获得积分10
5秒前
王多肉完成签到,获得积分10
6秒前
细腻的雅山完成签到 ,获得积分10
6秒前
yang完成签到,获得积分10
7秒前
duck99完成签到 ,获得积分10
7秒前
liupeng0403117完成签到,获得积分10
8秒前
小萝莉完成签到,获得积分10
8秒前
djdh完成签到 ,获得积分10
9秒前
Ethanyoyo0917完成签到,获得积分10
9秒前
小蘑菇应助科研通管家采纳,获得30
9秒前
Leonardi应助科研通管家采纳,获得20
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得10
10秒前
思源应助晨儿采纳,获得10
10秒前
tfsn20完成签到,获得积分10
11秒前
11秒前
斯文败类应助苗条的怀薇采纳,获得10
12秒前
shinysparrow应助小土豆采纳,获得10
12秒前
汉堡包应助困敦采纳,获得10
12秒前
方非笑应助困敦采纳,获得10
12秒前
wangwangdui完成签到,获得积分10
12秒前
Leo完成签到,获得积分10
13秒前
wxz完成签到,获得积分10
13秒前
鑫儿完成签到,获得积分20
14秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Teaching Social and Emotional Learning in Physical Education 900
Edestus (Chondrichthyes, Elasmobranchii) from the Upper Carboniferous of Xinjiang, China 500
Chinese-English Translation Lexicon Version 3.0 500
Electronic Structure Calculations and Structure-Property Relationships on Aromatic Nitro Compounds 500
マンネンタケ科植物由来メロテルペノイド類の網羅的全合成/Collective Synthesis of Meroterpenoids Derived from Ganoderma Family 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 440
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2381170
求助须知:如何正确求助?哪些是违规求助? 2088403
关于积分的说明 5245262
捐赠科研通 1815471
什么是DOI,文献DOI怎么找? 905834
版权声明 558834
科研通“疑难数据库(出版商)”最低求助积分说明 483672