A Third-order Two Stage Numerical Scheme and Neural Network Simulations for SEIR Epidemic Model: A Numerical Study

人工神经网络 阶段(地层学) 方案(数学) 流行病模型 应用数学 计算机科学 计算机模拟 订单(交换) 统计物理学 数学 人工智能 物理 模拟 数学分析 人口学 生物 经济 社会学 人口 古生物学 财务
作者
Muhammad Shoaib Arif,Kamaleldin Abodayeh,Yasir Nawaz
出处
期刊:Emerging science journal [Ital Publication]
卷期号:8 (1): 326-340 被引量:1
标识
DOI:10.28991/esj-2024-08-01-023
摘要

This study focuses on the cutting-edge field of epidemic modeling, providing a comprehensive investigation of a third-order two-stage numerical approach combined with neural network simulations for the SEIR (Susceptible-Exposed-Infectious-Removed) epidemic model. An explicit numerical scheme is proposed in this work for dealing with both linear and nonlinear boundary value problems. The scheme is built on two grid points, or two time levels, and is third-order. The main advantage of the scheme is its order of accuracy in two stages. Third-order precision is not only not provided by most existing explicit numerical approaches in two phases, but it also necessitates the computation of an additional derivative of the dependent variable. The proposed scheme's consistency and stability are also examined and presented. Nonlinear SEIR (susceptible-exposed-infected-recovered) models are used to implement the scheme. The scheme is compared with the non-standard finite difference and forward Euler methods that are already in use. The graph shows that the plan is more accurate than non-standard finite difference and forward Euler methods that are already in use. The solution obtained is then looked at through the lens of the neural network. The neural network is trained using an optimization approach known as the Levenberg-Marquardt backpropagation (LMB) algorithm. The mean square error across the total number of iterations, error histograms, and regression plots are the various graphs that can be created from this process. This work conducts thorough evaluations to not only identify the strengths and weaknesses of the suggested approach but also to examine its implications for public health intervention. The results of this study make a valuable contribution to the continuously developing field of epidemic modeling. They emphasize the importance of employing modern numerical techniques and machine learning algorithms to enhance our capacity to predict and effectively control infectious diseases. Doi: 10.28991/ESJ-2024-08-01-023 Full Text: PDF
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
脑洞疼应助赵雷采纳,获得10
2秒前
彭于晏应助Ning_采纳,获得10
3秒前
3秒前
4秒前
王智慧发布了新的文献求助10
4秒前
chenjunan发布了新的文献求助10
5秒前
godblessyou发布了新的文献求助10
7秒前
7秒前
科研通AI2S应助lxh采纳,获得10
8秒前
HJJHJH发布了新的文献求助30
8秒前
9秒前
有足量NaCl发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
12秒前
ding应助HJJHJH采纳,获得10
13秒前
Rencal完成签到 ,获得积分10
14秒前
godblessyou完成签到,获得积分10
15秒前
16秒前
剑K完成签到,获得积分10
16秒前
19秒前
赵雷发布了新的文献求助10
21秒前
21秒前
孙燕应助chenjunan采纳,获得10
22秒前
浮生如梦完成签到,获得积分10
22秒前
24秒前
小蘑菇应助5165asd采纳,获得10
26秒前
ycj发布了新的文献求助10
27秒前
粉面菜蛋完成签到,获得积分10
28秒前
29秒前
29秒前
哈哈哈哈啊哈完成签到,获得积分10
30秒前
Ttimer完成签到,获得积分10
32秒前
RATHER完成签到,获得积分10
33秒前
33秒前
蛋挞完成签到,获得积分20
33秒前
33秒前
34秒前
量子星尘发布了新的文献求助10
34秒前
香蕉觅云应助蓝雷狮王采纳,获得20
35秒前
OIIII应助DL采纳,获得10
36秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870874
求助须知:如何正确求助?哪些是违规求助? 3412925
关于积分的说明 10682149
捐赠科研通 3137423
什么是DOI,文献DOI怎么找? 1730915
邀请新用户注册赠送积分活动 834476
科研通“疑难数据库(出版商)”最低求助积分说明 781172