Can we trust our eyes? Interpreting the misperception of road safety from street view images and deep learning

感知 撞车 更安全的 运输工程 索引(排版) 道路交通安全 稀缺 地理 心理学 计算机科学 应用心理学 计算机安全 工程类 道路交通 神经科学 万维网 程序设计语言 微观经济学 经济
作者
Xujing Yu,Jun Ma,Yihong Tang,Tianren Yang,Feifeng Jiang
出处
期刊:Accident Analysis & Prevention [Elsevier BV]
卷期号:197: 107455-107455 被引量:5
标识
DOI:10.1016/j.aap.2023.107455
摘要

Road safety is a critical concern that impacts both human lives and urban development, drawing significant attention from city managers and researchers. The perception of road safety has gained increasing research interest due to its close connection with the behavior of road users. However, safety isn't always as it appears, and there is a scarcity of studies examining the association and mismatch between road traffic safety and road safety perceptions at the city scale, primarily due to the time-consuming nature of data acquisition. In this study, we applied an advanced deep learning model and street view images to predict and map human perception scores of road safety in Manhattan. We then explored the association and mismatch between these perception scores and traffic crash rates, while also interpreting the influence of the built environment on this disparity. The results showed that there was heterogeneity in the distribution of road safety perception scores. Furthermore, the study found a positive correlation between perception scores and crash rates, indicating that higher perception scores were associated with higher crash rates. In this study, we also concluded four perception patterns: "Safer than it looks", "Safe as it looks", "More dangerous than it looks", and "Dangerous as it looks". Wall view index, tree view index, building view index, distance to the nearest traffic signals, and street width were found to significantly influence these perception patterns. Notably, our findings underscored the crucial role of traffic lights in the "More dangerous than it looks" pattern. While traffic lights may enhance people's perception of safety, areas in close proximity to traffic lights were identified as potentially accident-prone regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
武迪发布了新的文献求助30
2秒前
3秒前
kelakola完成签到,获得积分10
3秒前
NexusExplorer应助whitebird采纳,获得10
3秒前
沐子笑发布了新的文献求助10
5秒前
等待青枫发布了新的文献求助10
7秒前
7秒前
11秒前
12秒前
Hbobo完成签到,获得积分10
13秒前
zhuhaot给zhuhaot的求助进行了留言
14秒前
14秒前
所所应助动听曼荷采纳,获得10
16秒前
科研通AI5应助快乐小狗采纳,获得10
16秒前
18秒前
18秒前
李瓦片儿发布了新的文献求助10
18秒前
19秒前
20秒前
20秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
大模型应助科研通管家采纳,获得10
20秒前
CipherSage应助科研通管家采纳,获得10
20秒前
科目三应助科研通管家采纳,获得10
20秒前
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
小二郎应助科研通管家采纳,获得10
20秒前
HEAUBOOK应助科研通管家采纳,获得10
20秒前
HEAUBOOK应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
领导范儿应助科研通管家采纳,获得10
20秒前
丘比特应助如泣草芥采纳,获得10
21秒前
香蕉觅云应助无语的惜芹采纳,获得10
23秒前
防易容发布了新的文献求助10
23秒前
An发布了新的文献求助10
24秒前
酷波er应助树123采纳,获得10
25秒前
26秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805322
求助须知:如何正确求助?哪些是违规求助? 3350279
关于积分的说明 10348304
捐赠科研通 3066188
什么是DOI,文献DOI怎么找? 1683602
邀请新用户注册赠送积分活动 809099
科研通“疑难数据库(出版商)”最低求助积分说明 765225