MetaFormer Baselines for Vision

安全性令牌 计算机科学 可分离空间 人工智能 数学 计算机网络 数学分析
作者
Weihao Yu,Chenyang Si,Pan Zhou,Mi Luo,Yichen Zhou,Jiashi Feng,Shuicheng Yan,Xinchao Wang
出处
期刊:Cornell University - arXiv 被引量:33
标识
DOI:10.48550/arxiv.2210.13452
摘要

MetaFormer, the abstracted architecture of Transformer, has been found to play a significant role in achieving competitive performance. In this paper, we further explore the capacity of MetaFormer, again, without focusing on token mixer design: we introduce several baseline models under MetaFormer using the most basic or common mixers, and summarize our observations as follows: (1) MetaFormer ensures solid lower bound of performance. By merely adopting identity mapping as the token mixer, the MetaFormer model, termed IdentityFormer, achieves >80% accuracy on ImageNet-1K. (2) MetaFormer works well with arbitrary token mixers. When specifying the token mixer as even a random matrix to mix tokens, the resulting model RandFormer yields an accuracy of >81%, outperforming IdentityFormer. Rest assured of MetaFormer's results when new token mixers are adopted. (3) MetaFormer effortlessly offers state-of-the-art results. With just conventional token mixers dated back five years ago, the models instantiated from MetaFormer already beat state of the art. (a) ConvFormer outperforms ConvNeXt. Taking the common depthwise separable convolutions as the token mixer, the model termed ConvFormer, which can be regarded as pure CNNs, outperforms the strong CNN model ConvNeXt. (b) CAFormer sets new record on ImageNet-1K. By simply applying depthwise separable convolutions as token mixer in the bottom stages and vanilla self-attention in the top stages, the resulting model CAFormer sets a new record on ImageNet-1K: it achieves an accuracy of 85.5% at 224x224 resolution, under normal supervised training without external data or distillation. In our expedition to probe MetaFormer, we also find that a new activation, StarReLU, reduces 71% FLOPs of activation compared with GELU yet achieves better performance. We expect StarReLU to find great potential in MetaFormer-like models alongside other neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果蜗牛发布了新的文献求助10
刚刚
xiaoxue发布了新的文献求助10
刚刚
yangts2021发布了新的文献求助10
1秒前
klio发布了新的文献求助10
1秒前
科目三应助西厢张生采纳,获得10
1秒前
FILPPED完成签到 ,获得积分10
3秒前
RoyChen发布了新的文献求助10
3秒前
3秒前
4秒前
xw发布了新的文献求助10
4秒前
一个骗子完成签到,获得积分10
4秒前
赵丫丫完成签到,获得积分10
4秒前
4秒前
AIT发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
赘婿应助科研通管家采纳,获得30
5秒前
打打应助科研通管家采纳,获得50
5秒前
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得30
6秒前
yznfly应助科研通管家采纳,获得20
6秒前
科目三应助BSDL采纳,获得10
6秒前
6秒前
Frank应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
yznfly应助科研通管家采纳,获得20
7秒前
icaohao发布了新的文献求助10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
tcf应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
前景完成签到 ,获得积分10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
The Tangram Book: The Story of the Chinese Puzzle With over 2000 Puzzles to Solve 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5451285
求助须知:如何正确求助?哪些是违规求助? 4559138
关于积分的说明 14271615
捐赠科研通 4482981
什么是DOI,文献DOI怎么找? 2455321
邀请新用户注册赠送积分活动 1446120
关于科研通互助平台的介绍 1422181