MetaFormer Baselines for Vision

安全性令牌 计算机科学 可分离空间 人工智能 数学 计算机网络 数学分析
作者
Weihao Yu,Chenyang Si,Pan Zhou,Mi Luo,Yichen Zhou,Jiashi Feng,Shuicheng Yan,Xinchao Wang
出处
期刊:Cornell University - arXiv 被引量:21
标识
DOI:10.48550/arxiv.2210.13452
摘要

MetaFormer, the abstracted architecture of Transformer, has been found to play a significant role in achieving competitive performance. In this paper, we further explore the capacity of MetaFormer, again, without focusing on token mixer design: we introduce several baseline models under MetaFormer using the most basic or common mixers, and summarize our observations as follows: (1) MetaFormer ensures solid lower bound of performance. By merely adopting identity mapping as the token mixer, the MetaFormer model, termed IdentityFormer, achieves >80% accuracy on ImageNet-1K. (2) MetaFormer works well with arbitrary token mixers. When specifying the token mixer as even a random matrix to mix tokens, the resulting model RandFormer yields an accuracy of >81%, outperforming IdentityFormer. Rest assured of MetaFormer's results when new token mixers are adopted. (3) MetaFormer effortlessly offers state-of-the-art results. With just conventional token mixers dated back five years ago, the models instantiated from MetaFormer already beat state of the art. (a) ConvFormer outperforms ConvNeXt. Taking the common depthwise separable convolutions as the token mixer, the model termed ConvFormer, which can be regarded as pure CNNs, outperforms the strong CNN model ConvNeXt. (b) CAFormer sets new record on ImageNet-1K. By simply applying depthwise separable convolutions as token mixer in the bottom stages and vanilla self-attention in the top stages, the resulting model CAFormer sets a new record on ImageNet-1K: it achieves an accuracy of 85.5% at 224x224 resolution, under normal supervised training without external data or distillation. In our expedition to probe MetaFormer, we also find that a new activation, StarReLU, reduces 71% FLOPs of activation compared with GELU yet achieves better performance. We expect StarReLU to find great potential in MetaFormer-like models alongside other neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
htm426完成签到,获得积分10
1秒前
stefdee完成签到,获得积分20
4秒前
yc发布了新的文献求助10
4秒前
zz关闭了zz文献求助
5秒前
酷波er应助稳重的灵安采纳,获得10
6秒前
wgw完成签到,获得积分10
6秒前
华子的五A替身完成签到,获得积分10
7秒前
Ava应助fengzi151采纳,获得10
9秒前
11秒前
12秒前
科研通AI5应助嘻嘻采纳,获得10
13秒前
cccyyb完成签到,获得积分10
15秒前
文献完成签到,获得积分10
16秒前
博修发布了新的文献求助10
16秒前
qcck完成签到,获得积分10
16秒前
张梦阳发布了新的文献求助10
16秒前
19秒前
FashionBoy应助稳重的灵安采纳,获得10
20秒前
20秒前
木子完成签到,获得积分10
22秒前
科研通AI2S应助高兴莆采纳,获得10
23秒前
24秒前
阿九发布了新的文献求助10
24秒前
大个应助科研通管家采纳,获得10
25秒前
Owen应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得30
25秒前
蜡笔小z发布了新的文献求助10
25秒前
天天快乐应助科研通管家采纳,获得10
25秒前
bkagyin应助科研通管家采纳,获得10
25秒前
慕青应助科研通管家采纳,获得30
25秒前
打工牛牛应助科研通管家采纳,获得10
26秒前
26秒前
天天快乐应助科研通管家采纳,获得10
26秒前
桐桐应助科研通管家采纳,获得10
26秒前
慕青应助科研通管家采纳,获得10
26秒前
卡卡西应助科研通管家采纳,获得10
26秒前
乐乐应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
共享精神应助科研通管家采纳,获得10
26秒前
星辰大海应助科研通管家采纳,获得10
26秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799266
求助须知:如何正确求助?哪些是违规求助? 3344889
关于积分的说明 10322458
捐赠科研通 3061369
什么是DOI,文献DOI怎么找? 1680310
邀请新用户注册赠送积分活动 806960
科研通“疑难数据库(出版商)”最低求助积分说明 763451