Improved inter-residue contact prediction via a hybrid generative model and dynamic loss function

蛋白质结构预测 计算机科学 卡斯普 残余物 交叉熵 生物系统 人工智能 算法 蛋白质结构 模式识别(心理学) 化学 生物化学 生物
作者
Mohammad Madani,Mohammad Mahdi Behzadi,Dongjin Song,Horea T. Ilieş,Anna Tarakanova
出处
期刊:Computational and structural biotechnology journal [Elsevier BV]
卷期号:20: 6138-6148 被引量:7
标识
DOI:10.1016/j.csbj.2022.11.020
摘要

Protein contact maps represent spatial pairwise inter-residue interactions, providing a protein's translationally and rotationally invariant topological representation. Accurate contact map prediction has been a critical driving force for improving protein structure determination. Contact maps can also be used as a stand-alone tool for varied applications such as prediction of protein-protein interactions, structure-aware thermal stability or physicochemical properties. We develop a novel hybrid contact map prediction model, CGAN-Cmap, that uses a generative adversarial neural network embedded with a series of modified squeeze and excitation residual networks. To exploit features of different dimensions, we introduce two parallel modules. This architecture improves the prediction by increasing receptive fields, surpassing redundant features and encouraging more meaningful ones from 1D and 2D inputs. We also introduce a new custom dynamic binary cross-entropy loss function to address the input imbalance problem for highly sparse long-range contacts in proteins with insufficient homologs. We evaluate the model's performance on CASP 11, 12, 13, 14, and CAMEO test sets. CGAN-Cmap outperforms state-of-the-art models, improving precision of medium and long-range contacts by at least 3.5%. As a direct assessment between our model and AlphaFold2, the leading available protein structure prediction model, we compare extracted contact maps from AlphaFold2 and predicted contact maps from CGAN-Cmap. The results show that CGAN-Cmap has a mean precision higher by 1% compared to AlphaFold2 for most ranges of contacts. These results demonstrate an efficient approach for highly accurate contact map prediction toward accurate characterization of protein structure, properties and functions from sequence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大力云朵完成签到,获得积分10
刚刚
齐小明发布了新的文献求助10
2秒前
5秒前
xwz发布了新的文献求助10
5秒前
呜呜呜啦发布了新的文献求助30
6秒前
朴素书雁完成签到,获得积分10
7秒前
7秒前
经绮梅完成签到,获得积分10
10秒前
失眠醉易应助梧桐采纳,获得20
11秒前
这瓜不卖发布了新的文献求助10
11秒前
小二郎应助干净的乐菱采纳,获得10
12秒前
fury0205完成签到,获得积分10
13秒前
14秒前
14秒前
无醇橙汁完成签到,获得积分10
15秒前
jkr完成签到,获得积分10
16秒前
17秒前
CipherSage应助fly采纳,获得10
18秒前
19秒前
ding应助科研辣椒采纳,获得10
19秒前
朝阳CAAS发布了新的文献求助10
19秒前
可爱的函函应助lan采纳,获得10
22秒前
李健的粉丝团团长应助Wu采纳,获得10
23秒前
忧伤的跳跳糖完成签到,获得积分10
23秒前
丙子哥发布了新的文献求助10
24秒前
Sinner完成签到,获得积分10
24秒前
ZhouYW应助TAC采纳,获得10
24秒前
卡卡西应助微笑的若云采纳,获得10
24秒前
香蕉梨愁完成签到 ,获得积分10
25秒前
Akim应助我有一只羊采纳,获得10
25秒前
qc发布了新的文献求助50
26秒前
犹豫的绝悟完成签到 ,获得积分10
27秒前
DDD关闭了DDD文献求助
27秒前
28秒前
科目三应助月yue采纳,获得10
29秒前
30秒前
30秒前
LMBE1K完成签到 ,获得积分10
30秒前
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810493
求助须知:如何正确求助?哪些是违规求助? 3354915
关于积分的说明 10373262
捐赠科研通 3071449
什么是DOI,文献DOI怎么找? 1686945
邀请新用户注册赠送积分活动 811316
科研通“疑难数据库(出版商)”最低求助积分说明 766596