亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Leveraging single-cell Raman spectroscopy and single-cell sorting for the detection and identification of yeast infections

酵母 核酸 微生物学 拉曼光谱 肽聚糖 化学 计算生物学 生物 细胞壁 生物化学 光学 物理
作者
Jingkai Wang,Siyu Meng,Kaicheng Lin,Xiaofei Yi,Yixiang Sun,Xiaogang Xu,Na He,Zhiqiang Zhang,Huijie Hu,Xingwang Qie,Dayi Zhang,Yuguo Tang,Wei E. Huang,Jian He,Yizhi Song
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1239: 340658-340658 被引量:16
标识
DOI:10.1016/j.aca.2022.340658
摘要

Invasive fungal infection serves as a great threat to human health. Discrimination between fungal and bacterial infections at the earliest stage is vital for effective clinic practice; however, traditional culture-dependent microscopic diagnosis of fungal infection usually requires several days, meanwhile, culture-independent immunological and molecular methods are limited by the detectable type of pathogens and the issues with high false-positive rates. In this study, we proposed a novel culture-independent phenotyping method based on single-cell Raman spectroscopy for the rapid discrimination between fungal and bacterial infections. Three Raman biomarkers, including cytochrome c, peptidoglycan, and nucleic acid, were identified through hierarchical clustering analysis of Raman spectra across 12 types of most common yeast and bacterial pathogens. Compared to those of bacterial pathogens, the single cells of yeast pathogens demonstrated significantly stronger Raman peaks for cytochrome c, but weaker signals for peptidoglycan and nucleic acid. A two-step protocol combining the three biomarkers was established and able to differentiate fungal infections from bacterial infections with an overall accuracy of 94.9%. Our approach was also used to detect ten raw urinary tract infection samples. Successful identification of fungi was achieved within half an hour after sample obtainment. We further demonstrated the accurate fungal species taxonomy achieved with Raman-assisted cell ejection. Our findings demonstrate that Raman-based fungal identification is a novel, facile, reliable, and with a breadth of coverage approach, that has a great potential to be adopted in routine clinical practice to reduce the turn-around time of invasive fungal disease (IFD) diagnostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
24秒前
佳佳发布了新的文献求助10
30秒前
骨科小李完成签到,获得积分10
30秒前
SciGPT应助佳佳采纳,获得10
39秒前
39秒前
jingjing完成签到,获得积分10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
loitinsuen应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
美满尔蓝完成签到,获得积分10
1分钟前
1分钟前
1分钟前
limecafe发布了新的文献求助10
1分钟前
佳佳完成签到,获得积分10
1分钟前
1分钟前
佳佳发布了新的文献求助10
1分钟前
斯文败类应助佳佳采纳,获得10
1分钟前
kk_1315完成签到,获得积分0
1分钟前
汪鸡毛完成签到 ,获得积分10
1分钟前
2分钟前
gtgyh发布了新的文献求助10
2分钟前
limecafe完成签到,获得积分20
2分钟前
lcw1998完成签到 ,获得积分10
2分钟前
奔跑的小熊完成签到 ,获得积分10
2分钟前
3分钟前
一分发布了新的文献求助10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
废久关注了科研通微信公众号
3分钟前
情怀应助过氧化氢采纳,获得10
3分钟前
Owen应助废久采纳,获得50
4分钟前
CATH完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522696
求助须知:如何正确求助?哪些是违规求助? 4613647
关于积分的说明 14539118
捐赠科研通 4551351
什么是DOI,文献DOI怎么找? 2494190
邀请新用户注册赠送积分活动 1475142
关于科研通互助平台的介绍 1446542