SAIL-Embedding Technical Report: Omni-modal Embedding Foundation Model

作者
Lin Lin,Judith A. Long,Zhang Wan,Yuchi Wang,Dingkang Yang,Shuang Yang,Yu Yao,Xu Chen,Zhiwei Guo,Shengqiang Li,Weiran Li,Huijun Li,Yi Mou,Qiu Yan,Haiyang Yu,Liang Xiao,Hongsheng Li,Chao Feng
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2510.12709
摘要

Multimodal embedding models aim to yield informative unified representations that empower diverse cross-modal tasks. Despite promising developments in the evolution from CLIP-based dual-tower architectures to large vision-language models, prior works still face unavoidable challenges in real-world applications and business scenarios, such as the limited modality support, unstable training mechanisms, and industrial domain gaps. In this work, we introduce SAIL-Embedding, an omni-modal embedding foundation model that addresses these issues through tailored training strategies and architectural design. In the optimization procedure, we propose a multi-stage training scheme to boost the multifaceted effectiveness of representation learning. Specifically, the content-aware progressive training aims to enhance the model's adaptability to diverse downstream tasks and master enriched cross-modal proficiency. The collaboration-aware recommendation enhancement training further adapts multimodal representations for recommendation scenarios by distilling knowledge from sequence-to-item and ID-to-item embeddings while mining user historical interests. Concurrently, we develop the stochastic specialization and dataset-driven pattern matching to strengthen model training flexibility and generalizability. Experimental results show that SAIL-Embedding achieves SOTA performance compared to other methods in different retrieval tasks. In online experiments across various real-world scenarios integrated with our model, we observe a significant increase in Lifetime (LT), which is a crucial indicator for the recommendation experience. For instance, the model delivers the 7-day LT gain of +0.5% in the Douyin-Selected scenario. For the Douyin feed rank model, the match features produced by SAIL-Embedding yield a +0.1% AUC gain.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
wlscj应助Lny采纳,获得20
5秒前
unowhoiam完成签到 ,获得积分10
13秒前
韧迹完成签到 ,获得积分0
21秒前
mike2012完成签到 ,获得积分10
23秒前
Artin完成签到,获得积分10
24秒前
卡卡罗特先森完成签到 ,获得积分10
27秒前
风中的向卉完成签到 ,获得积分10
27秒前
ll完成签到 ,获得积分10
31秒前
又又完成签到 ,获得积分10
32秒前
Yonckham完成签到,获得积分10
36秒前
leibaozun完成签到 ,获得积分10
37秒前
小点完成签到 ,获得积分10
41秒前
yo一天完成签到 ,获得积分10
43秒前
yuyu877完成签到 ,获得积分10
43秒前
43秒前
JamesPei应助猪猪hero采纳,获得10
46秒前
xz发布了新的文献求助10
49秒前
加油少年完成签到,获得积分10
52秒前
SN完成签到 ,获得积分10
54秒前
58秒前
mmd完成签到 ,获得积分10
58秒前
weiwei完成签到 ,获得积分10
1分钟前
猪猪hero发布了新的文献求助10
1分钟前
冷酷雪碧完成签到 ,获得积分10
1分钟前
FX1688完成签到 ,获得积分10
1分钟前
1分钟前
画龙点睛完成签到 ,获得积分10
1分钟前
潇洒的语蝶完成签到 ,获得积分10
1分钟前
leo完成签到,获得积分10
1分钟前
1分钟前
失眠的笑翠完成签到 ,获得积分10
1分钟前
roundtree完成签到 ,获得积分0
1分钟前
jackone完成签到 ,获得积分10
1分钟前
kelien1205完成签到 ,获得积分10
1分钟前
糟糕的翅膀完成签到,获得积分10
1分钟前
1分钟前
槑槑完成签到 ,获得积分10
1分钟前
1分钟前
稳重母鸡完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5188146
求助须知:如何正确求助?哪些是违规求助? 4372545
关于积分的说明 13613593
捐赠科研通 4225769
什么是DOI,文献DOI怎么找? 2317932
邀请新用户注册赠送积分活动 1316498
关于科研通互助平台的介绍 1266170