内质网
谷胱甘肽
化学
芦丁
细胞内
未折叠蛋白反应
细胞生物学
生物化学
抗氧化剂
生物物理学
生物
酶
作者
Qingxian Chen,Yan Wang,Tao Yue,Wei Hua,Shijing Li,Baoli Dong
标识
DOI:10.1021/acs.analchem.2c04209
摘要
Ferroptosis is an emerging form of nonapoptotic cell death, and the search for novel ferroptosis inhibitors is of great importance to explore unique cytoprotective strategies against ferroptosis-relevant diseases. In this work, we present an endoplasmic reticulum-targeting fluorescent probe (ER-G) for the imaging of intracellular glutathione (GSH) levels and revealed the inhibition effect of rutin on ferroptosis. Structurally, ER-G utilized a cyclohexyl sulfonylurea as the endoplasmic reticulum-targeting unit, and single-crystal X-ray diffraction analysis confirmed that ER-G possessed a N-oxide pyridine sulfinyl group instead of sulfone. After the response of ER-G to GSH, the fluorescence intensity at 523 nm displayed a significant increase by 3900-fold. ER-G showed extreme sensitivity and selectivity to GSH. The fluorescence imaging results demonstrated that ER-G exhibited excellent endoplasmic reticulum-targeting properties and could be applied to monitor GSH levels in the endoplasmic reticulum during the erastin-induced ferroptosis process. By the fluorescence imaging of GSH levels in the endoplasmic reticulum, it was demonstrated that rutin could efficiently block the depletion of GSH during erastin-induced ferroptosis and potentially act as a novel ferroptosis inhibitor. Moreover, unlike traditional ferroptosis inhibitors, it was speculated that the inhibition mechanism of rutin to ferroptosis was the integration of the chelate effect on Fe(II) ions and antioxidant effect. We expect that fluorescence imaging of GSH levels in the endoplasmic reticulum could provide a convenient and feasible method to evaluate the inhibition effect of small molecules on ferroptosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI