AT-GAN: A generative adversarial network with attention and transition for infrared and visible image fusion

融合 生成对抗网络 生成语法 计算机科学 图像融合 融合规则 前提 图像(数学) 滤波器(信号处理) 计算机视觉 人工智能 模式识别(心理学) 语言学 哲学
作者
Yujing Rao,Dan Wu,Mina Han,Ting Wang,Yang Yang,Tao Leí,Chengjiang Zhou,Haicheng Bai,Lin Xing
出处
期刊:Information Fusion [Elsevier]
卷期号:92: 336-349 被引量:123
标识
DOI:10.1016/j.inffus.2022.12.007
摘要

Infrared and visible image fusion methods aim to combine high-intensity instances and detail texture features into fused images. However, the ability to capture compact features under various adverse conditions is limited because the distribution of these multimodal features is generally cluttered. Therefore, targeted designs are necessary to constrain multimodal features to be compact. In addition, many attempts are not robust for low-quality images under various adverse conditions and the high fusion time of most fusion methods leads to less effective subsequent vision tasks. To address these issues, we propose a generative adversarial network with intensity attention modules and semantic transition modules, termed AT-GAN, which are more efficient to extract key information from multimodal images. The intensity attention modules aim to keep infrared instance features clearly and semantic transition modules attempt to filter out noise or other redundant features in visible texture. Moreover, an adaptive fused equilibrium point can be learned by a quality assessment module. Finally, experiments with variety of datasets reveal that the AT-GAN can adaptively learn features fusion and image reconstruction synchronously and further improve the timeliness under premise of fusion superiority of the proposed method over state of the art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈哈完成签到,获得积分10
刚刚
1秒前
cy完成签到,获得积分10
1秒前
2秒前
2秒前
酷波er应助jayna采纳,获得10
3秒前
ml发布了新的文献求助10
3秒前
今后应助兽先生采纳,获得10
4秒前
6秒前
七十二莳发布了新的文献求助10
7秒前
7秒前
莫北发布了新的文献求助80
8秒前
8秒前
落后安容完成签到,获得积分10
8秒前
Strongly完成签到,获得积分10
8秒前
优美紫槐应助白tt采纳,获得10
8秒前
轨迹应助老马采纳,获得30
9秒前
HJ2发布了新的文献求助10
11秒前
小卡拉米发布了新的文献求助10
11秒前
11秒前
超级雍发布了新的文献求助10
11秒前
烟花应助坦率访烟采纳,获得10
11秒前
Miyo发布了新的文献求助10
12秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
大个应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
pp发布了新的文献求助10
14秒前
HOAN应助科研通管家采纳,获得30
14秒前
共享精神应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
猪猪侠应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
蝶梦应助科研通管家采纳,获得10
14秒前
huxinshinn应助科研通管家采纳,获得50
14秒前
猪猪侠应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
小郭子应助科研通管家采纳,获得10
14秒前
芳菲依旧应助科研通管家采纳,获得30
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
A retrospective multi-center chart review study on the timely administration of systemic corticosteroids in children with moderate-to-severe asthma exacerbations 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5678231
求助须知:如何正确求助?哪些是违规求助? 4980079
关于积分的说明 15163747
捐赠科研通 4838071
什么是DOI,文献DOI怎么找? 2592179
邀请新用户注册赠送积分活动 1545543
关于科研通互助平台的介绍 1503708