MSWNet: A visual deep machine learning method adopting transfer learning based upon ResNet 50 for municipal solid waste sorting

分类 学习迁移 城市固体废物 深度学习 计算机科学 人工智能 机器学习 可视化 模拟 工程类 废物管理 算法
作者
Kunsen Lin,Youcai Zhao,Lina Wang,Wenjie Shi,Feifei Cui,Tao Zhou
出处
期刊:Frontiers of Environmental Science & Engineering [Higher Education Press]
卷期号:17 (6) 被引量:26
标识
DOI:10.1007/s11783-023-1677-1
摘要

An intelligent and efficient methodology is needed owning to the continuous increase of global municipal solid waste (MSW). This is because the common methods of manual and semi-mechanical screenings not only consume large amount of manpower and material resources but also accelerate virus community transmission. As the categories of MSW are diverse considering their compositions, chemical reactions, and processing procedures, etc., resulting in low efficiencies in MSW sorting using the traditional methods. Deep machine learning can help MSW sorting becoming into a smarter and more efficient mode. This study for the first time applied MSWNet in MSW sorting, a ResNet-50 with transfer learning. The method of cyclical learning rate was taken to avoid blind finding, and tests were repeated until accidentally encountering a good value. Measures of visualization were also considered to make the MSWNet model more transparent and accountable. Results showed transfer learning enhanced the efficiency of training time (from 741 s to 598.5 s), and improved the accuracy of recognition performance (from 88.50% to 93.50%); MSWNet showed a better performance in MSW classsification in terms of sensitivity (93.50%), precision (93.40%), F1-score (93.40%), accuracy (93.50%) and AUC (92.00%). The findings of this study can be taken as a reference for building the model MSW classification by deep learning, quantifying a suitable learning rate, and changing the data from high dimensions to two dimensions.Supplementary material is available in the online version of this article at 10.1007/s11783-023-1677-1 and is accessible for authorized users.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
爆米花应助XG采纳,获得10
2秒前
小云完成签到,获得积分10
2秒前
雨琴完成签到,获得积分10
3秒前
4秒前
5秒前
木木彡发布了新的文献求助10
6秒前
JamesPei应助北辰采纳,获得10
6秒前
都市隶人发布了新的文献求助10
7秒前
7秒前
王佳豪发布了新的文献求助10
8秒前
清爽老九应助qin123采纳,获得10
9秒前
9秒前
Orange应助阿渺采纳,获得10
10秒前
打打应助小云采纳,获得10
10秒前
奇迹的山完成签到,获得积分10
11秒前
一颗苹果发布了新的文献求助10
11秒前
Makarena发布了新的文献求助10
12秒前
12秒前
马紫蓝发布了新的文献求助10
12秒前
爆米花应助迅速的八宝粥采纳,获得10
13秒前
Bruce完成签到,获得积分10
13秒前
羊与布克发布了新的文献求助10
16秒前
16秒前
李一完成签到 ,获得积分10
17秒前
会放电的皮卡丘完成签到,获得积分10
19秒前
Makarena完成签到,获得积分10
20秒前
木木彡完成签到,获得积分10
22秒前
Zz发布了新的文献求助10
22秒前
老实冰薇完成签到,获得积分10
22秒前
Ray完成签到,获得积分10
22秒前
23秒前
24秒前
今后应助霜月十四采纳,获得10
24秒前
25秒前
25秒前
羊与布克完成签到,获得积分10
26秒前
XY打钉佬完成签到,获得积分10
26秒前
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780560
求助须知:如何正确求助?哪些是违规求助? 3326076
关于积分的说明 10225366
捐赠科研通 3041143
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799024
科研通“疑难数据库(出版商)”最低求助积分说明 758669