Simulation-to-real generalization for deep-learning-based refraction-corrected ultrasound tomography image reconstruction

计算机科学 人工智能 人工神经网络 深度学习 稳健性(进化) 迭代重建 图像质量 预处理器 卷积神经网络 计算机视觉 模式识别(心理学) 机器学习 图像(数学) 生物化学 基因 化学
作者
Wenzhao Zhao,Yuling Fan,Hongjian Wang,H. Gemmeke,Koen W. A. van Dongen,Torsten Hopp,Jürgen Hesser
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (3): 035016-035016 被引量:1
标识
DOI:10.1088/1361-6560/acaeed
摘要

Abstract Objective . The image reconstruction of ultrasound computed tomography is computationally expensive with conventional iterative methods. The fully learned direct deep learning reconstruction is promising to speed up image reconstruction significantly. However, for direct reconstruction from measurement data, due to the lack of real labeled data, the neural network is usually trained on a simulation dataset and shows poor performance on real data because of the simulation-to-real gap. Approach . To improve the simulation-to-real generalization of neural networks, a series of strategies are developed including a Fourier-transform-integrated neural network, measurement-domain data augmentation methods, and a self-supervised-learning-based patch-wise preprocessing neural network. Our strategies are evaluated on both the simulation dataset and real measurement datasets from two different prototype machines. Main results . The experimental results show that our deep learning methods help to improve the neural networks’ robustness against noise and the generalizability to real measurement data. Significance . Our methods prove that it is possible for neural networks to achieve superior performance to traditional iterative reconstruction algorithms in imaging quality and allow for real-time 2D-image reconstruction. This study helps pave the path for the application of deep learning methods to practical ultrasound tomography image reconstruction based on simulation datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
reeedirect应助77采纳,获得10
刚刚
酷波er应助BUBBLE采纳,获得10
刚刚
今后应助翔翔超人采纳,获得10
1秒前
完美世界应助eui采纳,获得10
1秒前
ljl86400完成签到,获得积分10
1秒前
lzs发布了新的文献求助10
2秒前
2秒前
2秒前
4秒前
轻语发布了新的文献求助10
4秒前
黄子舟完成签到,获得积分10
5秒前
小文殊发布了新的文献求助10
9秒前
朱可芯发布了新的文献求助10
9秒前
11秒前
碧蓝的ni发布了新的文献求助10
11秒前
科研通AI5应助朱可芯采纳,获得10
14秒前
轻语完成签到,获得积分20
15秒前
隐形曼青应助火星上映易采纳,获得10
18秒前
lzs发布了新的文献求助10
18秒前
18秒前
酷波er应助Proustian采纳,获得10
18秒前
月绛完成签到,获得积分10
19秒前
科研通AI5应助钱念波采纳,获得10
19秒前
20秒前
趣多多发布了新的文献求助10
20秒前
21秒前
努力站桩的奶酪完成签到 ,获得积分10
22秒前
顺顺发布了新的文献求助10
23秒前
24秒前
24秒前
24秒前
汉堡包应助WDS采纳,获得10
24秒前
WSY发布了新的文献求助30
24秒前
现代代芹发布了新的文献求助30
24秒前
科研通AI5应助Esty采纳,获得10
29秒前
鬼灭完成签到,获得积分10
30秒前
BUBBLE发布了新的文献求助10
30秒前
30秒前
hao完成签到 ,获得积分10
31秒前
31秒前
高分求助中
Many-electron theory of superexchange 1000
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Werkstoffe und Bauweisen in der Fahrzeugtechnik 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833037
求助须知:如何正确求助?哪些是违规求助? 3375428
关于积分的说明 10489067
捐赠科研通 3095080
什么是DOI,文献DOI怎么找? 1704212
邀请新用户注册赠送积分活动 819847
科研通“疑难数据库(出版商)”最低求助积分说明 771661