表征(材料科学)
流变学
材料科学
自愈水凝胶
计算机科学
吞吐量
生物系统
人工智能
泊洛沙姆
机器学习
纳米技术
机械工程
聚合物
工程类
复合材料
生物
高分子化学
电信
无线
共聚物
作者
Junru Zhang,Yang Liu,Durga Chandra Sekhar.P,Manjot Singh,Yuxin Tong,Ezgi Küçükdeğer,Hu Young Yoon,Alexander P. Haring,Maren Roman,Zhenyu Kong,Blake N. Johnson
标识
DOI:10.1016/j.apmt.2022.101720
摘要
High-throughput characterization (HTC) of composition-process-structure-property relations is essential for accelerating molecular and material discovery and manufacturing paradigms. Here, we present a rapid, autonomous method for HTC of hydrogel rheological properties in well plate formats via automated sensing and physics-guided supervised machine learning. The novel HTC method facilitates rapid, autonomous characterization of hydrogel rheological properties and percolation processes associated with gelation and network interpenetration in 96-well plate formats at a rate of 24 s/sample (70 times faster than the state-of-the-art). Viscoelastic properties and phase behavior obtained by the method were benchmarked against traditional rheology studies. The speed and utility of the method were demonstrated by high-resolution characterization of the gel point of Pluronic F127, collagen, and alginate-PNIPAM hydrogels in 96-well plate formats at resolutions of 0.31 wt% (Pluronic F127), 0.031 mg/ml (collagen), and 0.069 wt% (NIPAM), respectively. Experimental composition-property relation data generated from sensor multivariate time-series data, calibration data, and fluid-structure interaction models enabled accurate classification of sample phase using supervised machine learning. Feature augmentation using sensor physics, here, a fluid-structure interaction model, improved material (i.e., sample) phase classification accuracy relative to that obtained in the absence of physics-based feature augmentation. Ultimately, creating rapid, autonomous HTC methods that synergize with common high-throughput experimentation formats, such as well plates, can accelerate the pace of research across several disciplines as well as generate new tools for quality assurance and control across emerging industries.
科研通智能强力驱动
Strongly Powered by AbleSci AI