Railway accident causation analysis: Current approaches, challenges and potential solutions

因果关系 事故分析 背景(考古学) 风险分析(工程) 事故(哲学) 计算机科学 数据科学 毒物控制 运输工程 法律工程学 工程类 业务 医学 政治学 医疗急救 古生物学 哲学 认识论 法学 生物
作者
Wei-Ting Hong,Geoffrey Clifton,John D. Nelson
出处
期刊:Accident Analysis & Prevention [Elsevier BV]
卷期号:186: 107049-107049 被引量:9
标识
DOI:10.1016/j.aap.2023.107049
摘要

Railway accident causation analysis is fundamental to understanding the nature of railway safety. Although a considerable number of prior studies have investigated this context, many of them suffer from the need to deal with a large amount of textual data given that most railway safety-related information is recorded and stored in the form of text. To gain a better understanding of the limitations imposed by overreliance on textual analysis, a scoping review of the academic literature on how railway accident causation analysis is addressed has been conducted. The results confirm the high frequency of using textual data, a single case study, and in-depth analysis frameworks. While the value of exploring causational factors is clear, the high level of human intervention and the labour-intensive analysis processes based on a large volume of textual data hinder researchers from understanding the complex nature of the rail safety system. Recently, growing attention has been given to the application of Natural Language Processing (NLP) to aid the practice of analysing a large corpus of textual data, but only limited studies to date in railway safety use such techniques and none address railway accident causation analysis. To fill this gap, a supplementary review is conducted to identify opportunities, challenges, boundaries and limitations in the application of NLP approaches to railway accident causation analysis. Findings indicate that novel techniques using off-the-shelf tools have strong potential to overcome the limitations of overreliance on manual analysis in practice and theory, but the absence of shared railway safety-related benchmark corpora restricts implementation. This study sheds light on a new approach to railway accident causation analysis and clarifies future applicable utilisations for further research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助汎影采纳,获得10
1秒前
TT完成签到,获得积分20
1秒前
1秒前
1秒前
明亮的智宸完成签到,获得积分10
1秒前
Rock发布了新的文献求助10
1秒前
啊啊啊完成签到,获得积分20
1秒前
我是老大应助星睿采纳,获得10
2秒前
3秒前
沙漏完成签到,获得积分10
4秒前
4秒前
怡轻肝发布了新的文献求助10
5秒前
李倇仪完成签到,获得积分10
5秒前
6秒前
Stella发布了新的文献求助10
7秒前
2滴水完成签到,获得积分10
7秒前
plasmid完成签到,获得积分10
7秒前
8秒前
陆王牛马完成签到 ,获得积分10
9秒前
大模型应助爱喝冰可乐采纳,获得10
10秒前
初七123完成签到,获得积分10
10秒前
11秒前
希望天下0贩的0应助汎影采纳,获得10
11秒前
zzz完成签到,获得积分10
11秒前
12秒前
星睿发布了新的文献求助10
12秒前
善学以致用应助精明寒蕾采纳,获得10
13秒前
陆沉应助这瓜不卖采纳,获得10
13秒前
Ava应助爱蜜莉亚QAQ采纳,获得10
13秒前
Ch_7发布了新的文献求助10
15秒前
Gauss完成签到,获得积分0
15秒前
龙龙ff11_完成签到,获得积分10
17秒前
这瓜不卖完成签到,获得积分10
18秒前
Orange应助周周采纳,获得10
18秒前
Ava应助Rock采纳,获得10
19秒前
隐形曼青应助汎影采纳,获得10
19秒前
爪人猫完成签到,获得积分10
20秒前
何一凡发布了新的文献求助10
20秒前
20秒前
今后应助李喜喜采纳,获得10
20秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823316
求助须知:如何正确求助?哪些是违规求助? 3365761
关于积分的说明 10437289
捐赠科研通 3084882
什么是DOI,文献DOI怎么找? 1697037
邀请新用户注册赠送积分活动 816159
科研通“疑难数据库(出版商)”最低求助积分说明 769436