亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The development of machine learning-based remaining useful life prediction for lithium-ion batteries

电池(电) 电池容量 可靠性工程 锂离子电池 计算机科学 机器学习 人工智能 工程类 功率(物理) 量子力学 物理
作者
Xingjun Li,Dan Yu,Søren Byg Vilsen,Store Daniel Ioan
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:82: 103-121 被引量:60
标识
DOI:10.1016/j.jechem.2023.03.026
摘要

Lithium-ion batteries are the most widely used energy storage devices, for which the accurate prediction of the remaining useful life (RUL) is crucial to their reliable operation and accident prevention. This work thoroughly investigates the developmental trend of RUL prediction with machine learning (ML) algorithms based on the objective screening and statistics of related papers over the past decade to analyze the research core and find future improvement directions. The possibility of extending lithium-ion battery lifetime using RUL prediction results is also explored in this paper. The ten most used ML algorithms for RUL prediction are first identified in 380 relevant papers. Then the general flow of RUL prediction and an in-depth introduction to the four most used signal pre-processing techniques in RUL prediction are presented. The research core of common ML algorithms is given first time in a uniform format in chronological order. The algorithms are also compared from aspects of accuracy and characteristics comprehensively, and the novel and general improvement directions or opportunities including improvement in early prediction, local regeneration modeling, physical information fusion, generalized transfer learning, and hardware implementation are further outlooked. Finally, the methods of battery lifetime extension are summarized, and the feasibility of using RUL as an indicator for extending battery lifetime is outlooked. Battery lifetime can be extended by optimizing the charging profile serval times according to the accurate RUL prediction results online in the future. This paper aims to give inspiration to the future improvement of ML algorithms in battery RUL prediction and lifetime extension strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zz发布了新的文献求助10
2秒前
欢喜冰露发布了新的文献求助10
6秒前
香蕉觅云应助cccc采纳,获得10
10秒前
12秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
彩虹儿应助科研通管家采纳,获得10
14秒前
李健应助科研通管家采纳,获得10
14秒前
今后应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
领导范儿应助zz采纳,获得10
19秒前
大闲鱼铭一完成签到 ,获得积分10
21秒前
QQWRV完成签到,获得积分10
22秒前
32秒前
zz发布了新的文献求助10
36秒前
xxxx完成签到 ,获得积分10
36秒前
38秒前
小红发布了新的文献求助10
39秒前
标致天思完成签到,获得积分10
43秒前
ldhard完成签到,获得积分20
53秒前
幸符完成签到 ,获得积分10
57秒前
1分钟前
Cruffin发布了新的文献求助30
1分钟前
1分钟前
sky完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
不想干活应助复杂黑夜采纳,获得10
1分钟前
tff完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
123发布了新的文献求助10
1分钟前
无私的问芙完成签到,获得积分10
1分钟前
1分钟前
123完成签到,获得积分10
1分钟前
1分钟前
耐斯糖完成签到 ,获得积分10
1分钟前
NexusExplorer应助123采纳,获得10
1分钟前
行走完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4216151
求助须知:如何正确求助?哪些是违规求助? 3750323
关于积分的说明 11795800
捐赠科研通 3415924
什么是DOI,文献DOI怎么找? 1874769
邀请新用户注册赠送积分活动 928655
科研通“疑难数据库(出版商)”最低求助积分说明 837759