吸附
水溶液中的金属离子
化学
吸热过程
人体净化
海水
煅烧
金属
离子交换
水处理
化学工程
核化学
废物管理
环境工程
离子
有机化学
催化作用
环境科学
地质学
工程类
海洋学
作者
Wenting Zhao,Huan Zhang,Ke Feng,Tianyang Wang,Lei Han,Haifeng Xing,Hua Yin,Wenbo Wang
标识
DOI:10.1002/asia.202300146
摘要
An emerging "one stone, three birds" strategy was proposed to realize the value-added disposal of solid waste coal gangue (CG), the synthesis of superb adsorbent and the efficient decontamination of pollutants (i. e., dyes, heavy metals). In this process, the metal ions extrated from calcined coal gangue (CCG) was reconstituted by a one-step hydrothermal process to yield porous polymetallic silicate adsorbent (named HECCGA8h). The adsorbent has a high adsorption capacity of 270.27 and 185.53 mg/g for methylene blue (MB) and Cd(II), respectively. In the actual waters, the removal rate of MB by this adsorbent reaches 99.8% (in Yangtze River water) and 99.42% (in Seawater), and the removal rate of Cd(II) reaches 99.11% (in Yangtze River water) and 92.52% (in Seawater), respectively. Thermokinetic analysis showed that the adsorption of MB by HECCGA8h is spontaneous and endothermic with increased entropy, and the adsorption of Cd(II) is spontaneous and exothermic. The adsorption of MB is mainly driven by synergism of hydrogen bond, electrostatic attraction and ion exchange, and the adsorption of Cd(II) is mainly driven by the complexation and ion exchange between the surface group of the adsorbent and Cd(II). This research provides a new way for the realization of "treating waste with waste".
科研通智能强力驱动
Strongly Powered by AbleSci AI