Machine-Learning-Based Framework for Prediction of the Long-Term Field Performance of Asphalt Concrete Overlays in a Hot and Humid Climate

覆盖 沥青 预测建模 随机森林 路面管理 机器学习 领域(数学) 计算机科学 性能预测 工程类 人工智能 土木工程 模拟 数学 地图学 纯数学 程序设计语言 地理
作者
Elise Mansour,Momen R. Mousa,Heena Dhasmana,Marwa Hassan
出处
期刊:Transportation Research Record [SAGE Publishing]
卷期号:2677 (10): 375-385 被引量:1
标识
DOI:10.1177/03611981231161353
摘要

Pavement performance prediction models are used by state agencies to determine pavement maintenance and rehabilitation strategies. However, most performance prediction models are based on a limited number of parameters and a maximum prediction period of five years. With the ever-increasing amount of available pavement performance data, machine-learning techniques have become a promising alternative to traditional performance prediction models. The objective of this study was to develop a machine-learning-based framework for states with a hot and humid climate that can predict the long-term field performance (up to 11 years) of asphalt concrete (AC) overlays on asphalt pavements based on key project conditions. The pavement condition index (PCI) was used as the pavement performance indicator. Two machine-learning algorithms, namely, random forest (RF) and CatBoost, were examined. A total of 892 log-miles of AC overlay data were obtained from the Louisiana Department of Transportation and Development Pavement Management System database. Based on the collected data, six models were trained (for each algorithm) and validated to predict the PCI of AC overlays for up to 11 years. The results indicated that the RF algorithm yielded higher accuracy than the CatBoost algorithm. Therefore, the RF-based models were considered in the proposed decision-making framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
焱焱发布了新的文献求助10
1秒前
1秒前
DKE完成签到,获得积分10
1秒前
修管子完成签到,获得积分10
1秒前
2秒前
淡定的思松完成签到 ,获得积分10
2秒前
缥缈的青旋完成签到,获得积分10
2秒前
sunny完成签到 ,获得积分10
4秒前
4秒前
非而者厚应助木易同学采纳,获得10
4秒前
hukun100发布了新的文献求助10
4秒前
李国铭发布了新的文献求助10
4秒前
SYLH应助hyhyhyhy采纳,获得10
4秒前
5秒前
mkW完成签到,获得积分10
5秒前
呆鸥完成签到,获得积分10
5秒前
6秒前
金22完成签到,获得积分10
6秒前
zxy完成签到,获得积分10
6秒前
sw完成签到,获得积分10
7秒前
隐形曼青应助伢子采纳,获得10
7秒前
雷雷雷完成签到 ,获得积分10
7秒前
李爱国应助活力如冰采纳,获得10
8秒前
庞_完成签到 ,获得积分10
9秒前
周雨洁完成签到,获得积分20
9秒前
yc完成签到,获得积分10
9秒前
斯文败类应助sunli采纳,获得10
10秒前
10秒前
fed完成签到 ,获得积分10
10秒前
田様应助jm采纳,获得10
10秒前
阳光土豆完成签到,获得积分20
10秒前
11秒前
12秒前
蓝胖胖蓝完成签到,获得积分10
12秒前
12秒前
焱焱完成签到,获得积分20
12秒前
老实皮卡丘完成签到 ,获得积分10
13秒前
敬老院N号应助xunpeng采纳,获得30
13秒前
万能图书馆应助云上人采纳,获得10
13秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816440
求助须知:如何正确求助?哪些是违规求助? 3359935
关于积分的说明 10405824
捐赠科研通 3077960
什么是DOI,文献DOI怎么找? 1690410
邀请新用户注册赠送积分活动 813778
科研通“疑难数据库(出版商)”最低求助积分说明 767845