Super-strong biomimetic bulk bamboo-based composites by a neural network interfacial design strategy

竹子 材料科学 复合材料 极限抗拉强度 复合数
作者
Juan Hu,Jieyu Wu,Yuxiang Huang,Yingqi He,Jianguo Lin,Yamei Zhang,Yahui Zhang,Yanglun Yu,Wenji Yu
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:475: 146435-146435 被引量:45
标识
DOI:10.1016/j.cej.2023.146435
摘要

As a sustainable ecological material, bamboo has become a popular modern green building material because of its rich yield, lightweight, high strength and rich cultural heritage. However, due to the limitation of bamboo tube thickness, multiple thickness-direction laminations are usually required to achieve large-sized materials, which leads to a significant decrease in strength. Therefore, it is urgent to find a way produce high-strength bamboo engineering composites on a large scale. Herein, a neural network interface design strategy was proposed, and a mechanical dissociation and partial matrix removal pretreatment method was used to open the weak intercellular layer and bamboo cell wall layer to increase the resin permeation channels. This allowed the resin to form a multi-scale bonding interface between multiple dense bamboo layers, achieving the preparation of bulk bamboo-based composite with adjustable dimensions and properties. The neural network-like bonding interface could firmly fix the compressed bamboo cells and enhance the mechanical properties of the bamboo cell wall and intercellular layer of bamboo, resulting in a tensile strength of 853 MPa for the composite, which was nearly three times that of natural bamboo and significantly superior to many structural materials such as alloys and other bamboo-based composites. In addition, this material showed good mildew resistance, flame retardancy and dimensional stability. This large-size bamboo composites are easy to scale production, which can be used in fields such as wind turbine blades, building structures, and outdoor walkways in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花卷发布了新的文献求助10
刚刚
tomorrow发布了新的文献求助10
刚刚
阔达尔芙发布了新的文献求助10
刚刚
科研通AI5应助咕咕采纳,获得10
1秒前
麦兜的小馒头应助zhoushuai采纳,获得10
1秒前
Eva完成签到,获得积分10
1秒前
万能图书馆应助行进者采纳,获得10
1秒前
haoryan发布了新的文献求助10
1秒前
科研通AI5应助冬虫草采纳,获得10
2秒前
今后应助苏尔采纳,获得10
3秒前
YYMM发布了新的文献求助10
3秒前
orixero应助开心夜云采纳,获得10
3秒前
3秒前
丘比特应助乐观的非笑采纳,获得10
5秒前
阔达尔芙完成签到,获得积分10
5秒前
英俊的铭应助sby采纳,获得10
5秒前
LLL发布了新的文献求助10
5秒前
haoryan完成签到,获得积分10
6秒前
rjj001022发布了新的文献求助10
7秒前
8秒前
9秒前
11秒前
兴奋的水杯完成签到 ,获得积分10
11秒前
乐观的非笑完成签到,获得积分10
11秒前
12秒前
DJ发布了新的文献求助10
12秒前
kingwill发布了新的文献求助30
12秒前
13秒前
xj0806发布了新的文献求助10
13秒前
tomorrow完成签到,获得积分10
14秒前
科研畅通侠完成签到,获得积分10
14秒前
行进者发布了新的文献求助10
16秒前
16秒前
16秒前
苏尔发布了新的文献求助10
17秒前
也曦发布了新的文献求助10
17秒前
曾经曼梅完成签到,获得积分10
19秒前
20秒前
丁小研发布了新的文献求助10
20秒前
卡皮巴拉完成签到,获得积分10
22秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814887
求助须知:如何正确求助?哪些是违规求助? 3358983
关于积分的说明 10399091
捐赠科研通 3076489
什么是DOI,文献DOI怎么找? 1689843
邀请新用户注册赠送积分活动 813339
科研通“疑难数据库(出版商)”最低求助积分说明 767608