Towards Minimising Perturbation Rate for Adversarial Machine Learning with Pruning

对抗制 计算机科学 摄动(天文学) 深层神经网络 人工智能 算法 机器学习 人工神经网络 量子力学 物理
作者
Zhiyu Zhu,J. Z. Zhang,Zhibo Jin,Xinyi Wang,Minhui Xue,Jun Shen,Kim–Kwang Raymond Choo,Huaming Chen
出处
期刊:Lecture Notes in Computer Science 卷期号:: 147-163
标识
DOI:10.1007/978-3-031-43412-9_9
摘要

Deep neural networks can be potentially vulnerable to adversarial samples. For example, by introducing tiny perturbations in the data sample, the model behaviour may be significantly altered. While the adversarial samples can be leveraged to enhance the model robustness and performance with adversarial training, one critical attribute of the adversarial samples is the perturbation rate. A lower perturbation rate means a smaller difference between the adversarial and the original sample. It results in closer features learnt from the model for the adversarial and original samples, resulting in higher-quality adversarial samples. How to design a successful attacking algorithm with a minimum perturbation rate remains challenging. In this work, we consider pruning algorithms to dynamically minimise the perturbation rate for adversarial attacks. In particularly, we propose, for the first time, an attribution based perturbation reduction method named Min-PR for white-box adversarial attacks. The comprehensive experiment results demonstrate Min-PR can achieve minimal perturbation rates of adversarial samples while providing guarantee to train robust models. The code in this paper is available at: https://github.com/LMBTough/Min-PR .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小西米发布了新的文献求助10
刚刚
1秒前
1秒前
科研通AI5应助qq1215采纳,获得10
2秒前
自然飞机发布了新的文献求助10
3秒前
漂亮的倒挂金钩完成签到,获得积分10
3秒前
4秒前
Sylus发布了新的文献求助10
4秒前
小星星很忙完成签到,获得积分10
4秒前
Lion发布了新的文献求助10
4秒前
咩咩完成签到,获得积分20
6秒前
gbx完成签到,获得积分10
8秒前
8秒前
RRRZZ完成签到 ,获得积分10
8秒前
琦琦发布了新的文献求助10
9秒前
10秒前
11秒前
科研通AI2S应助zhian采纳,获得30
11秒前
丘比特应助小西米采纳,获得10
12秒前
孤独的珩完成签到,获得积分10
13秒前
echo完成签到,获得积分10
13秒前
落后乐蓉发布了新的文献求助10
13秒前
临诗发布了新的文献求助10
15秒前
取名叫做利完成签到,获得积分10
16秒前
17秒前
橙味美年达完成签到,获得积分10
17秒前
可爱的函函应助烂漫草莓采纳,获得10
18秒前
Clearly完成签到 ,获得积分10
18秒前
XXXXL发布了新的文献求助10
18秒前
19秒前
FashionBoy应助丽丽采纳,获得30
19秒前
李健应助xiu-er采纳,获得10
20秒前
20秒前
20秒前
21秒前
22秒前
NexusExplorer应助段采萱采纳,获得10
22秒前
研友_CCQ_M完成签到,获得积分10
22秒前
丁温暖完成签到 ,获得积分10
23秒前
上官若男应助decademe采纳,获得10
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789633
求助须知:如何正确求助?哪些是违规求助? 3334559
关于积分的说明 10270626
捐赠科研通 3050998
什么是DOI,文献DOI怎么找? 1674381
邀请新用户注册赠送积分活动 802549
科研通“疑难数据库(出版商)”最低求助积分说明 760761