Hybrid Prediction-Driven High-Throughput Sustainability Screening for Advancing Waste-to-Dimethyl Ether Valorization

持续性 吞吐量 工艺工程 响应面法 过程(计算) 环境科学 生化工程 计算机科学 废物管理 工程类 机器学习 生态学 电信 无线 生物 操作系统
作者
Dániel Fózer,Philippe Nimmegeers,András József Tóth,Petar Sabev Varbanov,Jiří Jaromír Klemeš,Péter Mizsey,Michael Zwicky Hauschild,Mikołaj Owsianiak
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (36): 13449-13462 被引量:5
标识
DOI:10.1021/acs.est.3c01892
摘要

Assessing the prospective climate preservation potential of novel, innovative, but immature chemical production techniques is limited by the high number of process synthesis options and the lack of reliable, high-throughput quantitative sustainability pre-screening methods. This study presents the sequential use of data-driven hybrid prediction (ANN–RSM–DOM) to streamline waste-to-dimethyl ether (DME) upcycling using a set of sustainability criteria. Artificial neural networks (ANNs) are developed to generate in silico waste valorization experimental results and ex-ante model the operating space of biorefineries applying the organic fraction of municipal solid waste (OFMSW) and sewage sludge (SS). Aspen Plus process flowsheeting and ANN simulations are postprocessed using the response surface methodology (RSM) and desirability optimization method (DOM) to improve the in-depth mechanistic understanding of environmental systems and identify the most benign configurations. The hybrid prediction highlights the importance of targeted waste selection based on elemental composition and the need to design waste-specific DME synthesis to improve techno-economic and environmental performances. The developed framework reveals plant configurations with concurrent climate benefits (−1.241 and −2.128 kg CO2-eq (kg DME)−1) and low DME production costs (0.382 and 0.492 € (kg DME)−1) using OFMSW and SS feedstocks. Overall, the multi-scale explorative hybrid prediction facilitates early stage process synthesis, assists in the design of block units with nonlinear characteristics, resolves the simultaneous analysis of qualitative and quantitative variables, and enables the high-throughput sustainability screening of low technological readiness level processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
性静H情逸发布了新的文献求助10
1秒前
1秒前
2秒前
气味发布了新的文献求助10
4秒前
风清扬发布了新的文献求助10
5秒前
大模型应助轻松凡采纳,获得10
6秒前
6秒前
7秒前
大个应助guxiaosang采纳,获得10
9秒前
9秒前
脑洞疼应助yaorongxia采纳,获得10
10秒前
大白发布了新的文献求助10
10秒前
11秒前
西柚完成签到,获得积分0
12秒前
共享精神应助丽儿采纳,获得10
12秒前
bbbuc完成签到,获得积分10
15秒前
颜朗完成签到,获得积分10
15秒前
16秒前
17秒前
18秒前
852应助123采纳,获得10
21秒前
CodeCraft应助仔仔采纳,获得10
21秒前
22秒前
22秒前
搜集达人应助智博36采纳,获得10
23秒前
23秒前
有魅力醉山完成签到,获得积分10
26秒前
TWE完成签到,获得积分10
28秒前
29秒前
w_w应助123采纳,获得30
30秒前
31秒前
31秒前
佛人世间完成签到,获得积分10
32秒前
zhaoshao完成签到,获得积分10
33秒前
嘿哈完成签到,获得积分10
33秒前
笑纳完成签到,获得积分10
34秒前
orixero应助山头人二号采纳,获得10
35秒前
36秒前
LILY发布了新的文献求助10
36秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4537055
求助须知:如何正确求助?哪些是违规求助? 3972128
关于积分的说明 12305419
捐赠科研通 3638852
什么是DOI,文献DOI怎么找? 2003525
邀请新用户注册赠送积分活动 1038901
科研通“疑难数据库(出版商)”最低求助积分说明 928336