MCMARL: Parameterizing Value Function via Mixture of Categorical Distributions for Multi-Agent Reinforcement Learning

随机性 功能(生物学) 范畴变量 强化学习 价值(数学) 计算机科学 一般化 期望值 分布(数学) 人工智能 数学 机器学习 统计 进化生物学 生物 数学分析
作者
Jian Zhao,Mingyu Yang,Youpeng Zhao,Xunhan Hu,Wengang Zhou,Houqiang Li
出处
期刊:IEEE transactions on games [Institute of Electrical and Electronics Engineers]
卷期号:16 (3): 556-565 被引量:2
标识
DOI:10.1109/tg.2023.3310150
摘要

In cooperative multi-agent tasks, a team of agents jointly interact with an environment by taking actions, receiving a team reward and observing the next state. During the interactions, the uncertainty of environment and reward will inevitably induce stochasticity in the long-term returns and the randomness can be exacerbated with the increasing number of agents. However, such randomness is ignored by most of the existing value-based multi-agent reinforcement learning (MARL) methods, which only model the expectation of Q-value for both individual agents and the team. Compared to using the expectations of the long-term returns, it is preferable to directly model the stochasticity by estimating the returns through distributions. With this motivation, this work proposes a novel value-based MARL framework from a distributional perspective, i.e. , parameterizing value function via M ixture of C ategorical distributions for MARL. Specifically, we model both individual Q-values and global Q-value with categorical distribution. To integrate categorical distributions, we define five basic operations on the distribution, which allow the generalization of expected value function factorization methods ( e.g. , VDN and QMIX) to their MCMARL variants. We further prove that our MCMARL framework satisfies Distributional-Individual-Global-Max (DIGM) principle with respect to the expectation of distribution, which guarantees the consistency between joint and individual greedy action selections in the global Q-value and individual Q-values. Empirically, we evaluate MCMARL on both a stochastic matrix game and a challenging set of StarCraft II micromanagement tasks, showing the efficacy of our framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助闰月采纳,获得30
1秒前
2秒前
2秒前
suicone完成签到,获得积分10
2秒前
2秒前
陌日遗迹完成签到,获得积分10
3秒前
zhou完成签到,获得积分10
3秒前
FashionBoy应助熊玉然采纳,获得10
4秒前
考拉完成签到 ,获得积分10
4秒前
NexusExplorer应助wsw111采纳,获得10
4秒前
万物生完成签到,获得积分10
4秒前
sss完成签到,获得积分10
4秒前
淡定映之完成签到,获得积分10
5秒前
大模型应助zzz采纳,获得10
6秒前
Lucas应助钟迪采纳,获得10
6秒前
7秒前
高贵的沂发布了新的文献求助10
7秒前
9秒前
我喝白开水完成签到,获得积分10
9秒前
修仙中应助搬砖美少女采纳,获得10
9秒前
HLJemm发布了新的文献求助10
9秒前
搜集达人应助高兴的幻柏采纳,获得10
9秒前
11秒前
ding应助淡定映之采纳,获得10
11秒前
12秒前
12秒前
13秒前
JamesPei应助WPY1采纳,获得10
13秒前
脑洞疼应助咿呀咿呀哟采纳,获得10
14秒前
皮蛋_WH完成签到,获得积分10
15秒前
平淡的大有完成签到,获得积分10
16秒前
张步完成签到 ,获得积分10
16秒前
哈哈妮发布了新的文献求助10
17秒前
大模型应助平淡醉卉采纳,获得10
17秒前
愿好发布了新的文献求助30
17秒前
Spiritual应助hjk采纳,获得30
17秒前
多情老三完成签到 ,获得积分10
17秒前
天空之城发布了新的文献求助10
18秒前
完美世界应助HLJemm采纳,获得10
19秒前
Jacey79完成签到 ,获得积分10
20秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4139251
求助须知:如何正确求助?哪些是违规求助? 3676140
关于积分的说明 11620152
捐赠科研通 3370289
什么是DOI,文献DOI怎么找? 1851331
邀请新用户注册赠送积分活动 914485
科研通“疑难数据库(出版商)”最低求助积分说明 829253