已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multimodality radiomics prediction of radiotherapy-induced the early proctitis and cystitis in rectal cancer patients: a machine learning study

随机森林 人工智能 特征选择 接收机工作特性 朴素贝叶斯分类器 医学 线性判别分析 威尔科克森符号秩检验 磁共振成像 数学 支持向量机 放射科 模式识别(心理学) 计算机科学 核医学 机器学习 内科学 曼惠特尼U检验
作者
Samira Abbaspour,Maedeh Barahman,Hamid Abdollahi,Hossein Arabalibeik,Ghasem Hajainfar,Mohammadreza Babaei,Hamed Iraji,Mohammadreza Barzegartahamtan,Mohammad Reza Ay,Seied Rabi Mahdavi
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (1): 015017-015017 被引量:6
标识
DOI:10.1088/2057-1976/ad0f3e
摘要

Abstract Purpose. This study aims to predict radiotherapy-induced rectal and bladder toxicity using computed tomography (CT) and magnetic resonance imaging (MRI) radiomics features in combination with clinical and dosimetric features in rectal cancer patients. Methods. A total of sixty-three patients with locally advanced rectal cancer who underwent three-dimensional conformal radiation therapy (3D-CRT) were included in this study. Radiomics features were extracted from the rectum and bladder walls in pretreatment CT and MR-T2W-weighted images. Feature selection was performed using various methods, including Least Absolute Shrinkage and Selection Operator (Lasso), Minimum Redundancy Maximum Relevance (MRMR), Chi-square (Chi2), Analysis of Variance (ANOVA), Recursive Feature Elimination (RFE), and SelectPercentile. Predictive modeling was carried out using machine learning algorithms, such as K-nearest neighbor (KNN), Support Vector Machine (SVM), Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Naive Bayes (NB), Gradient Boosting (XGB), and Linear Discriminant Analysis (LDA). The impact of the Laplacian of Gaussian (LoG) filter was investigated with sigma values ranging from 0.5 to 2. Model performance was evaluated in terms of the area under the receiver operating characteristic curve (AUC), accuracy, precision, sensitivity, and specificity. Results. A total of 479 radiomics features were extracted, and 59 features were selected. The pre-MRI T2W model exhibited the highest predictive performance with an AUC: 91.0/96.57%, accuracy: 90.38/96.92%, precision: 90.0/97.14%, sensitivity: 93.33/96.50%, and specificity: 88.09/97.14%. These results were achieved with both original image and LoG filter (sigma = 0.5–1.5) based on LDA/DT-RF classifiers for proctitis and cystitis, respectively. Furthermore, for the CT data, AUC: 90.71/96.0%, accuracy: 90.0/96.92%, precision: 88.14/97.14%, sensitivity: 93.0/96.0%, and specificity: 88.09/97.14% were acquired. The highest values were achieved using XGB/DT-XGB classifiers for proctitis and cystitis with LoG filter (sigma = 2)/LoG filter (sigma = 0.5–2), respectively. MRMR/RFE-Chi2 feature selection methods demonstrated the best performance for proctitis and cystitis in the pre-MRI T2W model. MRMR/MRMR-Lasso yielded the highest model performance for CT. Conclusion. Radiomics features extracted from pretreatment CT and MR images can effectively predict radiation-induced proctitis and cystitis. The study found that LDA, DT, RF, and XGB classifiers, combined with MRMR, RFE, Chi2, and Lasso feature selection algorithms, along with the LoG filter, offer strong predictive performance. With the inclusion of a larger training dataset, these models can be valuable tools for personalized radiotherapy decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cindy完成签到,获得积分10
2秒前
xuexin发布了新的文献求助10
4秒前
5秒前
杨子怡完成签到 ,获得积分10
7秒前
chenlc971125完成签到 ,获得积分10
7秒前
fl发布了新的文献求助10
11秒前
典雅问寒应助科研通管家采纳,获得10
15秒前
orixero应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
阿呆完成签到 ,获得积分10
16秒前
YaN完成签到 ,获得积分10
19秒前
害怕导师的小可怜完成签到,获得积分10
21秒前
今后应助视野胤采纳,获得10
23秒前
可久斯基完成签到 ,获得积分10
28秒前
30秒前
清脆元冬完成签到,获得积分20
30秒前
视野胤完成签到,获得积分10
31秒前
33秒前
视野胤发布了新的文献求助10
34秒前
研友_VZG7GZ应助zyh采纳,获得10
37秒前
莫里亚蒂发布了新的文献求助10
38秒前
44秒前
慕青应助一丢丢采纳,获得30
45秒前
47秒前
xuexin发布了新的文献求助10
51秒前
53秒前
莓烦恼完成签到 ,获得积分10
1分钟前
Hello应助sxy采纳,获得30
1分钟前
1分钟前
1分钟前
周钰波完成签到,获得积分20
1分钟前
1分钟前
xiaoyu完成签到 ,获得积分10
1分钟前
Hello应助fl采纳,获得10
1分钟前
zyh发布了新的文献求助10
1分钟前
李健的小迷弟应助Qyyy采纳,获得10
1分钟前
顺心的舞蹈完成签到,获得积分10
1分钟前
1分钟前
Mr.Young完成签到,获得积分10
1分钟前
西门浩宇完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780773
求助须知:如何正确求助?哪些是违规求助? 3326334
关于积分的说明 10226454
捐赠科研通 3041394
什么是DOI,文献DOI怎么找? 1669379
邀请新用户注册赠送积分活动 799051
科研通“疑难数据库(出版商)”最低求助积分说明 758723