亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Remote sensing image semantic segmentation method based on small target and edge feature enhancement

计算机科学 人工智能 特征(语言学) 模式识别(心理学) 图像分割 分割 编码器 棱锥(几何) 计算机视觉 特征提取 卷积神经网络 数学 哲学 语言学 几何学 操作系统
作者
Huaijun Wang,Libo Qiao,Li He,Xiujuan Li,Junhuai Li,Ting Cao,Chunyi Zhang
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:17 (04)
标识
DOI:10.1117/1.jrs.17.044503
摘要

Semantic segmentation of high-resolution remote sensing images based on deep learning has become a hot research topic and has been widely applied. At present, based on the structure of the convolutional neural network, when extracting target features through multiple layer convolutional layers, it is easy to cause the loss of small target features and fuzzy boundary of ground object classification. Therefore, we propose a remote sensing image semantic segmentation method P-Net to detect small target and enhance edge feature. The proposed network was based on an Encoder-Decoder structure. The decoder included the following components: a progressive small target feature enhancement network (IFEN), a boundary thinning module (BRM), and a feature aggregation module (FIAM). Firstly, the dense side output features of the encoder network were utilized to learn and acquired small target feature information and target edge features. Secondly, the pyramid segmentation attention module was introduced to effectively extract fine-grained and multi-scale spatial information. This module enhanced the feature expression of small targets and obtained high-level semantic feature information. The boundary refinement module was designed to refine the low-level spatial feature information extracted by the encoder. Finally, in order to improve the accuracy of remote sensing image object segmentation boundaries, skip connections were used to fuse high-level semantic information and low-level spatial information acrossed layers. These skip connections had the same spatial resolution but different semantic information. In this paper, six evaluation indices including mean intersection over union, frequency weighted intersection over union, pixel accuracy, F1, recall, and precision were used to verify on two public datasets of high-resolution remote sensing images, Gaofen image dataset (GID) and wuhan dense labeling dataset (WHDLD). In the GID dataset, each index reached 78.90%, 78.87%, 87.76%, 87.74%, 87.51%, and 88.04%, respectively; in the WHDLD dataset, each index reached 63.21%, 75.20%, 84.67%, 75.79%, 76.56%, and 75.45%, respectively. The results show that the performance of proposed method is better than that of DeepLabv3+, U-NET, PSPNet, and DUC_HDC methods. More precisely, the recognition performance of small target features is better, and the boundary obtained between object categories is clearer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ayayaya完成签到 ,获得积分10
39秒前
chenlc971125完成签到 ,获得积分10
42秒前
乐乐应助科研通管家采纳,获得10
43秒前
49秒前
54秒前
55秒前
cheng发布了新的文献求助10
59秒前
心灵美砖头完成签到,获得积分10
1分钟前
cheng完成签到,获得积分20
1分钟前
领导范儿应助任性的岱周采纳,获得10
2分钟前
2分钟前
2分钟前
zhen完成签到,获得积分10
2分钟前
2分钟前
许愿发布了新的文献求助100
2分钟前
任性的岱周完成签到,获得积分10
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
2分钟前
倩倩完成签到 ,获得积分10
3分钟前
3分钟前
鱼死网破发布了新的文献求助10
3分钟前
大模型应助鱼死网破采纳,获得10
4分钟前
4分钟前
小蘑菇应助科研通管家采纳,获得10
4分钟前
张土豆完成签到 ,获得积分10
5分钟前
小白菜完成签到,获得积分10
5分钟前
强强发布了新的文献求助10
6分钟前
万能图书馆应助无误采纳,获得80
6分钟前
小样发布了新的文献求助10
6分钟前
OCDer应助无误采纳,获得80
6分钟前
6分钟前
无误发布了新的文献求助80
6分钟前
思源应助科研通管家采纳,获得10
6分钟前
赘婿应助科研通管家采纳,获得10
6分钟前
Siren发布了新的文献求助10
6分钟前
6分钟前
123321完成签到 ,获得积分10
7分钟前
Rongbid完成签到 ,获得积分10
8分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824996
求助须知:如何正确求助?哪些是违规求助? 3367312
关于积分的说明 10445199
捐赠科研通 3086684
什么是DOI,文献DOI怎么找? 1698167
邀请新用户注册赠送积分活动 816652
科研通“疑难数据库(出版商)”最低求助积分说明 769880