Rapid identification of chemical composition and quality markers of Gynostemma pentaphylla by ultra-performance liquid chromatography combined with triple quadrupole mass spectrometry connected with high-performance liquid chromatography

化学 绞股蓝 色谱法 四极飞行时间 质谱法 三级四极质谱仪 人参 质量标准 高效液相色谱法 成分 活性成分 人参皂甙 串联质谱法 萃取(化学) 食品科学 选择性反应监测 药理学 医学 替代医学 病理
作者
Yumeng Wang,Yunshan Wu,Siyu Wang,Weiying Chen,Lei Chen,Xiao-Dong Han,Bo Liu,Shumei Wang
出处
期刊:Spectroscopy Letters [Taylor & Francis]
卷期号:56 (8): 434-443
标识
DOI:10.1080/00387010.2023.2252887
摘要

AbstractGynostemma pentaphylla, one of the traditional Chinese medicinal materials, which has gradually become a research hotspot due to its rich pharmacological activities such as hypolipidemic properties, anti-inflammatory, anti-cancer and etc. The main active ingredients of Gynostemma pentaphyllum are saponins (gypenoside), flavonoids and polysaccharides. The pharmacologically active dose depends on the content of the active ingredient, so it is necessary to establish a reliable quality evaluation standard for Gynostemma pentaphyllum. However, the existing Gynostemma pentaphyllum quality control methods are not perfect, Ginsenoside Rb1 was regarded as a signature ingredient of Gynostemma pentaphylla in local standards. Surprisingly, the high-performance liquid chromatogram results displayed that the content of Ginsenoside Rb1 was not suitable as a quality marker. Therefore, a triple quadrupole time-of-flight tandem mass spectrometer method was developed to explore other potential quality markers in Gynostemma pentaphylla. As a result, a total of 24 compounds was identified tentatively. While another stable and reliable component Gypenoside XLVI was found and the content was carried out. It was expected to replace Ginsenoside Rb1 to establish a more reliable and precise quality standard of Gynostemma pentaphylla.Keywords: Chemical constituentsGynostemma pentaphylla (Thunb.) Makinohigh-performance liquid chromatogramultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry Disclosure statementThe authors declare that there are no conflicts of interest.Additional informationFundingThis work was financially supported by the Key-Area Research and Development Program of Guangdong Province (No. 2020B1111110007); The special foundation of Guangzhou Key Laboratory (No. 202002010004); Natural Science Foundation of Guangdong Province (No. 2017B030314166 and 2022A1515010103); the Specific Research Fund for TCM Science and Technology of Guangdong Provincial Hospital of Chinese Medicine (Nos. YN2019MJ05 and YN2020QN02); Research Fund for Bajian Talents of Guangdong Provincial Hospital of Chinese Medicine (No. BJ2022KY08), Collaborative innovation project of Guangzhou University of Chinese Medicine (Nos. 2021xk69 and 2021xk08), and Special Funds for State Key Laboratory of Dampness Syndrome of Chinese Medicine (Nos. SZ2021ZZ33, SZ2021ZZ36, SZ2021ZZ40, and SZ2021ZZ46).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SCI66完成签到,获得积分20
刚刚
酷波er应助老木虫采纳,获得10
1秒前
wangrblzu应助c0uVi1采纳,获得10
1秒前
1秒前
小李飞刀发布了新的文献求助10
2秒前
唐小刚完成签到,获得积分10
2秒前
sanfi发布了新的文献求助10
2秒前
南瓜豆腐完成签到 ,获得积分10
4秒前
虚幻诗柳完成签到,获得积分10
5秒前
orange发布了新的文献求助10
7秒前
orixero应助彩色靖儿采纳,获得10
8秒前
清仔完成签到,获得积分10
10秒前
11秒前
mmm发布了新的文献求助10
12秒前
14秒前
共享精神应助dove00采纳,获得10
14秒前
嘻嘻印完成签到,获得积分10
14秒前
Eternitymaria发布了新的文献求助10
16秒前
16秒前
19秒前
Akim应助mmm采纳,获得10
19秒前
gyhmm发布了新的文献求助10
20秒前
研友_GZbmqn完成签到,获得积分10
20秒前
22秒前
南风旧巷发布了新的文献求助10
22秒前
只是虚瘦发布了新的文献求助10
23秒前
25秒前
天凉王破完成签到 ,获得积分10
25秒前
26秒前
那奇泡芙发布了新的文献求助10
27秒前
shuaiBsen完成签到,获得积分10
28秒前
笨笨芯发布了新的文献求助10
30秒前
30秒前
石头完成签到,获得积分10
32秒前
只是虚瘦发布了新的文献求助10
33秒前
小香菜完成签到,获得积分10
33秒前
酷波er应助飞宇采纳,获得10
34秒前
那奇泡芙完成签到,获得积分10
34秒前
hyx完成签到,获得积分10
34秒前
852应助笨笨芯采纳,获得10
34秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Preparative Methods of Polymer Chemistry, 3rd Edition 200
The Oxford Handbook of Chinese Philosophy 200
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834985
求助须知:如何正确求助?哪些是违规求助? 3377482
关于积分的说明 10498789
捐赠科研通 3096967
什么是DOI,文献DOI怎么找? 1705382
邀请新用户注册赠送积分活动 820539
科研通“疑难数据库(出版商)”最低求助积分说明 772123