Robust Calibration of Vehicle Solid-State Lidar-Camera Perception System Using Line-Weighted Correspondences in Natural Environments

人工智能 计算机视觉 稳健性(进化) 计算机科学 激光雷达 点云 像素 特征(语言学) 校准 残余物 束流调整 特征提取 摄像机切除 遥感 算法 数学 摄影测量学 地理 生物化学 化学 语言学 哲学 统计 基因
作者
Shengjun Tang,Yuqi Feng,Junjie Huang,Xiaoming Li,Zhihan Lv,Yuhong Feng,Weixi Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (5): 4489-4502 被引量:4
标识
DOI:10.1109/tits.2023.3328062
摘要

With the rapid development of autonomous driving and SLAM technology, the perception system of a vehicle heavily relies on laser and image sensors to capture the real-world scenario and avoid obstacles autonomously. To achieve accurate and robust multi-sensor fusion computation, high-precision extrinsic calibration of camera and laser scanner is a necessary requirement. Traditional multi-sensor calibration methods based on manual features rely on specific scenarios and may not provide feature information over long distances. In this paper, we present a novel approach for robustly calibrating the extrinsic parameters of a solid-state(SS) lidar-camera system in a natural environment. Our proposed method begins with obtaining robust line feature information. we first innovatively employ a super-voxel clustering method to extract global 3D line features from the complete point cloud and then back-project these 3D line features into 2D space. Afterward, a transformer-based edge detection network, EDTER, is used to detect the edge features and estimate the probability pixel-by-pixel. To consider the uncertainty of two-dimensional line features and the inconsistency of residuals at different distances, we construct a line feature weight model for line feature residual calculation. Finally, we minimize the residual errors using least squares optimization to recover the relative pose of the camera and the lidar sensor. We conducted a performance study to compare our proposed method against existing targetless calibration methods on various natural scenarios. The experimental results demonstrate that our proposed method achieves higher robustness, accuracy, and consistency, making it suitable for real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
忧心的洙完成签到,获得积分10
4秒前
科目三应助马薄函采纳,获得10
4秒前
mikey完成签到,获得积分10
5秒前
minglinzi完成签到,获得积分10
6秒前
lili完成签到 ,获得积分10
6秒前
深水鱼发布了新的文献求助10
6秒前
jackscu应助yjercou采纳,获得10
7秒前
科研通AI5应助果汁鱼采纳,获得10
9秒前
drzh发布了新的文献求助20
9秒前
10秒前
LLL完成签到 ,获得积分10
10秒前
12秒前
师霸发布了新的文献求助10
15秒前
15秒前
归尘应助执葵采纳,获得10
16秒前
马薄函完成签到,获得积分10
16秒前
吱吱发布了新的文献求助10
18秒前
Hui完成签到,获得积分10
19秒前
马薄函发布了新的文献求助10
19秒前
19秒前
勤劳的富完成签到 ,获得积分10
21秒前
冷傲天川发布了新的文献求助10
22秒前
Sunny完成签到,获得积分10
22秒前
小蘑菇应助mingjie采纳,获得10
22秒前
zzy完成签到 ,获得积分10
23秒前
23秒前
科研小白发布了新的文献求助20
23秒前
nnnn发布了新的文献求助10
25秒前
大个应助张好难采纳,获得10
25秒前
26秒前
26秒前
Fei发布了新的文献求助10
29秒前
白白发布了新的文献求助10
29秒前
小志完成签到,获得积分10
30秒前
111发布了新的文献求助10
30秒前
复杂鼠标发布了新的文献求助10
32秒前
wuyuzegang应助白白采纳,获得20
34秒前
WTT发布了新的文献求助10
34秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4122738
求助须知:如何正确求助?哪些是违规求助? 3660622
关于积分的说明 11587158
捐赠科研通 3361823
什么是DOI,文献DOI怎么找? 1847216
邀请新用户注册赠送积分活动 911727
科研通“疑难数据库(出版商)”最低求助积分说明 827597