亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

#36260 Machine learning to predict postoperative pain and opioid outcomes: promise or pitfall?

计算机科学 类阿片 人工智能 机器学习 术后疼痛 医学 麻醉 内科学 受体
作者
Julia Reichel,Haoyan Zhong,Jiabin Liu,Dale J. Langford
标识
DOI:10.1136/rapm-2023-esra.417
摘要

Please confirm that an ethics committee approval has been applied for or granted: Not relevant (see information at the bottom of this page) Application for ESRA Abstract Prizes: I don't wish to apply for the ESRA Prizes

Background and Aims

Machine learning enables complex patient data to be distilled into predictive diagnostic tools. This review identified studies that applied machine learning to predict acute, subacute, or chronic pain or opioid use after any surgical procedure.

Methods

We searched PubMed using the following search strategy and terms: 'machine learning' OR 'artificial intelligence' AND 'pain' OR 'opioid' AND 'surgery' OR 'postoperative' AND 'predict.' The inclusion criteria were literature written in English that used machine learning and/or artificial intelligence to predict postoperative and/or opioid use after surgery. The exclusion criteria were reviews; protocol papers, commentaries; not a pain or opioid-related outcome; not a postoperative outcome; diagnostic or measurement tool.

Results

Thirty-nine studies were included (figure 1). Nineteen studies (48.7%) utilized machine learning to predict the outcome of chronic postoperative pain or function after any surgical procedure, followed by 12 studies (30.8%) utilizing machine learning to predict chronic postoperative opioid use. The most common algorithms were GBDT (n = 28), random forest algorithms (n = 23) and regularization algorithms (n = 22). 27 studies (69.2%) used preoperative pain as a predictor in the initial model. 22 studies (69.2%) used preoperative pain as a predictor in the final model. 25 studies (64.1%) used preoperative opioid use as a predictor in the initial model. 19 studies (54.3%) used preoperative opioid use as a predictor in the final model.

Conclusions

Machine learning can contribute to personalized perioperative pain management approaches. Patient-reported variables are important, salient predictors of acute, subacute, or chronic pain or opioid use after any surgical procedure.

Attachment

ESRA 2023 Machine Learning Abstract_5.21.2023_final.pdf
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
18秒前
典雅的河马应助Carl采纳,获得10
20秒前
奔跑的青霉素完成签到 ,获得积分10
21秒前
LPPQBB应助科研通管家采纳,获得100
23秒前
Zhangfu完成签到,获得积分10
36秒前
36秒前
51秒前
51秒前
1分钟前
1分钟前
1分钟前
爆米花应助闲居冬雨采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
俭朴蜜蜂完成签到 ,获得积分10
1分钟前
闲居冬雨发布了新的文献求助10
1分钟前
1分钟前
Akim应助闲居冬雨采纳,获得10
1分钟前
1分钟前
2分钟前
汪洋一叶完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Jasper应助酷酷的冬灵采纳,获得10
2分钟前
2分钟前
3分钟前
Kevin完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
TXZ06发布了新的文献求助30
3分钟前
Lucas应助无限冬卉采纳,获得10
4分钟前
4分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5335288
求助须知:如何正确求助?哪些是违规求助? 4473170
关于积分的说明 13921343
捐赠科研通 4367324
什么是DOI,文献DOI怎么找? 2399572
邀请新用户注册赠送积分活动 1392638
关于科研通互助平台的介绍 1363840