Dual attention-based deep learning network for multi-class object semantic segmentation of tunnel point clouds

点云 计算机科学 分割 人工智能 规范化(社会学) 交叉熵 深度学习 编码器 交叉口(航空) 数据挖掘 模式识别(心理学) 工程类 社会学 人类学 航空航天工程 操作系统
作者
Ankang Ji,Limao Zhang,Hongqin Fan,Xiaolong Xue,Yudan Dou
出处
期刊:Automation in Construction [Elsevier BV]
卷期号:156: 105131-105131 被引量:3
标识
DOI:10.1016/j.autcon.2023.105131
摘要

Aiming to automatically segment multi-class objects on the tunnel point cloud, a deep learning network named dual attention-based point cloud network (DAPCNet) is developed in this paper to act on point clouds for segmentation. In the developed model, data normalization and feature aggregation are first processed to eliminate data discrepancies and enhance local features, after which the processed data are input into the built network layers based on the encoder-decoder architecture coupled with an improved 3D dual attention module to extract and learn features. Furthermore, a custom loss function called Facal Cross-Entropy ("FacalCE") is designed to enhance the model's ability to extract and learn features while addressing imbalanced data distribution. To validate the effectiveness and feasibility of the developed model, a dataset of tunnel point clouds collected from a real engineering project in China is employed. The experimental results indicate that (1) the developed model has excellent performance with Mean Intersection over Union (MIoU) of 0.8597, (2) the improved 3D dual attention module and "FacalCE" contribute to the model performance, respectively, and (3) the developed model is superior to other state-of-the-art methods, such as PointNet and DGCNN. In summary, the DAPCNet model exhibits exceptional performance, offering effective and accurate results for segmenting multi-class objects within tunnel point clouds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sanker发布了新的文献求助10
刚刚
共享精神应助清脆的连虎采纳,获得10
2秒前
2秒前
3秒前
5秒前
玉玊发布了新的文献求助10
6秒前
boyuan完成签到,获得积分10
6秒前
领导范儿应助平常天佑采纳,获得10
7秒前
庆余年发布了新的文献求助10
8秒前
科研通AI5应助cfsyyfujia采纳,获得10
9秒前
Hiker发布了新的文献求助10
10秒前
10秒前
11秒前
情怀应助玉玊采纳,获得10
11秒前
12秒前
12秒前
科研通AI5应助糟糕的道罡采纳,获得10
14秒前
JamesPei应助侦察兵采纳,获得10
15秒前
桐桐应助九川采纳,获得10
15秒前
一颗苹果完成签到,获得积分10
16秒前
拾贰发布了新的文献求助10
17秒前
YIZEXIN发布了新的文献求助10
17秒前
18秒前
breeze发布了新的文献求助10
19秒前
20秒前
21秒前
松果完成签到,获得积分10
22秒前
科研助手6应助拉长的芷烟采纳,获得10
22秒前
科研助手6应助拉长的芷烟采纳,获得10
23秒前
chemly完成签到 ,获得积分10
23秒前
24秒前
25秒前
小蘑菇应助Math4396采纳,获得10
25秒前
25秒前
周周发布了新的文献求助10
25秒前
天天快乐应助Feng采纳,获得10
25秒前
侦察兵发布了新的文献求助10
27秒前
Cong发布了新的文献求助10
27秒前
29秒前
30秒前
高分求助中
Practitioner Research at Doctoral Level 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797685
求助须知:如何正确求助?哪些是违规求助? 3343169
关于积分的说明 10314824
捐赠科研通 3059896
什么是DOI,文献DOI怎么找? 1679129
邀请新用户注册赠送积分活动 806367
科研通“疑难数据库(出版商)”最低求助积分说明 763144