Domain adversarial graph neural network with cross-city graph structure learning for traffic prediction

计算机科学 杠杆(统计) 对抗制 深度学习 先验与后验 图形 人工智能 特征学习 数据挖掘 领域(数学分析) 机器学习 领域知识 理论计算机科学 数学分析 哲学 认识论 数学
作者
Xiaocao Ouyang,Yan Yang,Yiling Zhang,Wei Zhou,Jihong Wan,Shengdong Du
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:278: 110885-110885 被引量:14
标识
DOI:10.1016/j.knosys.2023.110885
摘要

Deep learning models have emerged as a promising way for traffic prediction. However, the requirement for large amounts of training data remains a significant issue for achieving well-performing models. Data scarcity in real-world scenarios, caused by costly collection or privacy policies, can severely impede the performance of existing deep learning models. Transfer learning aims to leverage knowledge learned from data-sufficient cities to improve prediction performance in data-scarce cities. Unfortunately, most existing methods solely focus on transferring knowledge at the city level, neglecting fine-grained node-level correlations and distribution discrepancies between cities. In this paper, we propose DAGN, a domain adversarial graph neural network that mines inter-city spatial–temporal correlations and alleviates domain distribution discrepancies to address the data scarcity problem in traffic prediction. Specifically, DAGN comprises three key modules: (1) A cross-city graph structure learning module is developed to capture node-pair adjacent relationships across cities, enabling the dynamic aggregation of inter-city spatial–temporal information. Additionally, a graph reconstruction loss is proposed to enforce structural consistency between the learned and priori graphs. (2) A domain adversarial strategy is integrated with a spatial–temporal module, which jointly extracts domain-invariant spatial and temporal features to reduce the distribution discrepancies between cities. (3) To adaptively extract transferable knowledge from a global perspective, a global spatial–temporal attention module is designed. Extensive experiments on six traffic flow and traffic speed prediction benchmarks demonstrate that DAGN consistently outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
434518757645发布了新的文献求助10
2秒前
2秒前
小杨完成签到 ,获得积分10
3秒前
研友_GZ3zRn完成签到 ,获得积分0
5秒前
6秒前
cdercder应助科研通管家采纳,获得20
6秒前
6秒前
434518757645完成签到,获得积分10
12秒前
roundtree完成签到 ,获得积分10
12秒前
洸彦完成签到 ,获得积分10
13秒前
小米稀饭完成签到 ,获得积分10
20秒前
20秒前
CQ完成签到 ,获得积分10
21秒前
曾经的帅哥完成签到,获得积分10
22秒前
yang完成签到 ,获得积分10
22秒前
昏睡的妙梦完成签到 ,获得积分10
23秒前
24秒前
25秒前
居里姐姐完成签到 ,获得积分10
27秒前
linjunqi发布了新的文献求助10
28秒前
按照国际惯例完成签到 ,获得积分10
31秒前
怕瓦落地完成签到,获得积分10
32秒前
32秒前
lv完成签到,获得积分10
37秒前
吃小孩的妖怪完成签到 ,获得积分10
42秒前
45秒前
GB完成签到 ,获得积分10
47秒前
cavendipeng完成签到,获得积分10
47秒前
老张完成签到 ,获得积分10
49秒前
稳重乌冬面完成签到 ,获得积分10
49秒前
MRJJJJ完成签到,获得积分10
49秒前
53秒前
imica完成签到 ,获得积分10
54秒前
xiaoguai完成签到 ,获得积分10
54秒前
奋斗的妙海完成签到 ,获得积分0
1分钟前
摆哥完成签到,获得积分10
1分钟前
1分钟前
轩辕完成签到 ,获得积分10
1分钟前
张颖完成签到 ,获得积分10
1分钟前
科目三应助hebhm采纳,获得10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788357
求助须知:如何正确求助?哪些是违规求助? 3333722
关于积分的说明 10263216
捐赠科研通 3049630
什么是DOI,文献DOI怎么找? 1673639
邀请新用户注册赠送积分活动 802120
科研通“疑难数据库(出版商)”最低求助积分说明 760511