MaizeNetome: A multi-omics network database for functional genomics in maize

生物 基因组学 功能基因组学 组学 计算生物学 生物技术 生物信息学 基因组 遗传学 基因
作者
Jia-Wu Feng,Linqian Han,Liu H,Wen‐Zhao Xie,Hanmingzi Liu,Li Lin,Lingling Chen
出处
期刊:Molecular Plant [Elsevier]
卷期号:16 (8): 1229-1231
标识
DOI:10.1016/j.molp.2023.08.002
摘要

Eukaryotic life is a complex system (Trewavas, 2006Trewavas A. A brief history of systems biology Every object that biology studies is a system of systems." Francois Jacob.Plant Cell. 2006; 18: 2420-2430https://doi.org/10.1105/tpc.106.042267Crossref PubMed Scopus (117) Google Scholar). Networks offer a reasonable means of describing complex life systems. Networks constructed for animals and plants have significantly furthered our understanding of complex life systems and functional genomics (Consortium, 2011Arabidopsis Interactome Mapping ConsortiumEvidence for network evolution in an Arabidopsis interactome map.Science. 2011; 333: 601-607https://doi.org/10.1126/science.1203877Crossref PubMed Google Scholar; Walley et al., 2016Walley J.W. Sartor R.C. Shen Z. Schmitz R.J. Wu K.J. Urich M.A. Smith L.G. Schnable J.C. Ecker J.R. Briggs S.P. et al.Integration of omic networks in a developmental atlas of maize.Science. 2016; 353: 814-818Crossref PubMed Scopus (270) Google Scholar; Altmann et al., 2020Altmann M. Altmann S. Rodriguez P.A. Weller B. Elorduy Vergara L. Palme J. Marín-de la Rosa N. Sauer M. Wenig M. Villaécija-Aguilar J.A. et al.Extensive signal integration by the phytohormone protein network.Nature. 2020; 583: 271-276https://doi.org/10.1038/s41586-020-2460-0Crossref PubMed Scopus (67) Google Scholar; Luck et al., 2020Luck K. Kim D.K. Lambourne L. Spirohn K. Begg B.E. Bian W. Brignall R. Cafarelli T. Campos-Laborie F.J. Charloteaux B. et al.A reference map of the human binary protein interactome.Nature. 2020; 580: 402-408https://doi.org/10.1038/s41586-020-2188-xCrossref PubMed Scopus (472) Google Scholar; McWhite et al., 2020McWhite C.D. Papoulas O. Drew K. Cox R.M. June V. Dong O.X. Kwon T. Wan C. Salmi M.L. Roux S.J. et al.A pan-plant protein complex map reveals deep conservation and novel assemblies.Cell. 2020; 181: 460-474.e14https://doi.org/10.1016/j.cell.2020.02.049Abstract Full Text Full Text PDF PubMed Scopus (97) Google Scholar; Zander et al., 2020Zander M. Lewsey M.G. Clark N.M. Yin L. Bartlett A. Saldierna Guzmán J.P. Hann E. Langford A.E. Jow B. Wise A. et al.Integrated multi-omics framework of the plant response to jasmonic acid.Nat. Plants. 2020; 6: 290-302https://doi.org/10.1038/s41477-020-0605-7Crossref PubMed Scopus (109) Google Scholar). However, integrative networks spanning different layers of genetic information are lacking. In previous research, we constructed MaizeNetome, a comprehensive Maize Network database (Figure 1A) containing over 15 million edges for more than 1000 functional modules. This database covers the flow of genetic information from genome to transcriptome (co-expression network from RNA sequencing [RNA-seq]), to translatome (co-translational network from ribosome profiling sequencing [Ribo-seq]), and to interactome (Han et al., 2023Han L. Zhong W. Qian J. Jin M. Tian P. Zhu W. Zhang H. Sun Y. Feng J.-W. Liu X. et al.A multi-omics integrative network map of maize.Nat. Genet. 2023; 55: 144-153https://doi.org/10.1038/s41588-022-01262-1Crossref PubMed Scopus (11) Google Scholar). We curated 10 networks derived from five different omics (genome, transcriptome, translatome, interactome, and integrative omics) at two confidence levels (high and low) and integrated them into our MaizeNetome database (Figure 1B). This integrative netome makes not only evolutionary sense but also biological sense, and it can be used for systematic functional genetics dissection (Han et al., 2023Han L. Zhong W. Qian J. Jin M. Tian P. Zhu W. Zhang H. Sun Y. Feng J.-W. Liu X. et al.A multi-omics integrative network map of maize.Nat. Genet. 2023; 55: 144-153https://doi.org/10.1038/s41588-022-01262-1Crossref PubMed Scopus (11) Google Scholar). The MaizeNetome database is not only the largest gene-to-gene network to our knowledge but also includes several user-friendly tools to enable its use in functional genomics: BLAST, Gbrowse, Module Search, Element Search, Element Fetch, Network Creation, Module Hit, and Network Comparison tools, plus QTG (quantitative trait gene) Interaction Score and Pathway Mapping analyses (Figure 1C). To efficiently explore this large network database, we designed MaizeNetome in three layers. The whole network is classified into hub networks, which show the network architecture of different omics; directly connected networks, which show direct relationships among specific nodes (genes); and module networks, which are a subset of coherent functional genes. Accordingly, two strategies—reverse genetics (starting from a gene/node; Figure 1D) and forward genetics (starting from a complex trait; Figure 1E)—were devised for systematic dissection of functional genomic relationships. For reverse genetics analyses, the Element Search tool allows users to query functional annotations, expression information across multiple tissues, module networks, and directly connected networks. We recommend a further Gene Ontology enrichment analysis using the gene identifiers (IDs) in these networks to hypothesize functions of query elements. Functional comparison of different genes using the Network Comparison tool is also available. Taking Zm00001d042282 as an example, users can obtain the Zm00001d042282 ID by sequence alignment, genomic location, or B73 Version 4 ID. Element Search delivers a series of annotation information on expression at the transcription and translation levels, module networks, and directly connected networks for each omics. When dissecting the functional relationship of Zm00001d042282 with Zm00001d017601, Network Comparison displays the similarities and differences between two nodes/genes at the omics levels (Figure 1D). Most agronomic traits are quantitative traits conferred by several genes and their complicated interactions. Forward genetics is effective for dissecting the molecular mechanisms of agronomic traits. The MaizeNetome database has several forward genetics tools based on our network big data, such as QTG Interaction Score and Pathway Mapping (Figure 1E). Although MaizeNetome is large, it is not saturated. We devised Pathway Mapping to infer potential interactions and predict new networks according to the shortest distance in different omics networks. Pathway Mapping can help users understand the molecular pathways underlying complex traits. For example, a network relationship constructed by Pathway Mapping using 19 genes related to plant height can further our understanding of plant development in maize (Supplemental Table 1; Figure 1F). Users can not only identify interactions with plant height-related genes under different omics but also search for previously uncharacterized interactions. MaizeNetome illustrates functional relationships among genes from the network structure (Han et al., 2023Han L. Zhong W. Qian J. Jin M. Tian P. Zhu W. Zhang H. Sun Y. Feng J.-W. Liu X. et al.A multi-omics integrative network map of maize.Nat. Genet. 2023; 55: 144-153https://doi.org/10.1038/s41588-022-01262-1Crossref PubMed Scopus (11) Google Scholar). We used the MaizeNetome map to develop QTG Interaction Score analysis to prioritize the candidate gene for a quantitative trait locus (QTL) based on preliminary QTL mapping. Fine mapping and cloning QTLs spanning a large genomic region is time consuming and costly (Wu et al., 2021Wu L. Han L. Li Q. Wang G. Zhang H. Li L. Using interactome big data to crack genetic mysteries and enhance future crop breeding.Mol. Plant. 2021; 14: 77-94https://doi.org/10.1016/j.molp.2020.12.012Abstract Full Text Full Text PDF PubMed Scopus (28) Google Scholar). QTG Interaction Score quickly narrows down the target genes associated with a QTL. To test the robustness of the QTG Interaction Score, we treated 36 well-known flowering time genes and 19 plant height genes (Supplemental Table 2) as positive QTGs of QTLs with 1- to 2-Mb genomic regions. QTG Interaction Score predicted potential genes located in each QTL and sorted candidate genes by their potential scores. The higher the score, the more likely the gene is the QTG. The accuracy of prediction in the top 30% of genes was up to 49% using Co-translation Network and Slim Co-expression Network (Figure 1G, Supplemental Table 3). Taking qPH7 located at chromosome 7:128 190 000–138 120 000 (B73V4) and differentially expressed genes identified in a previous study (Zhang et al., 2019Zhang H. Wang X. Pan Q. Li P. Liu Y. Lu X. Zhong W. Li M. Han L. Li J. et al.QTG-Seq accelerates QTL fine mapping through QTL partitioning and whole-genome sequencing of bulked segregant samples.Mol. Plant. 2019; 12: 426-437https://doi.org/10.1016/j.molp.2018.12.018Abstract Full Text Full Text PDF PubMed Scopus (67) Google Scholar) as an example, QTG Interaction Score ranked the causal gene fourth out of 209 in the QTL range (Co-translation Network) (Supplemental Table 4). When the region was narrowed down to only 2 Mb (7:134 000 000–136 000 000), the target gene was ranked first out of 52 genes using Co-expression Network (Supplemental Table 4). Users can quickly identify the causal QTG by observing whether genes are differentially expressed and whether mutations occur in the QTL. In summary, the MaizeNetome database is a comprehensive, big-data, molecular network that we believe is the first and largest multi-omics network database in eukaryotes. With rapidly advancing network detection techniques, we plan to update the maize interactome database regularly. However, the real internal environment is very complex, and it remains a huge challenge to estimate biological processes in vivo. MaizeNetome is based on the maize B73 version 4 genome reference, limiting its applicability to other maize genotypes and other species, especially where the functions of homologous genes are different. MaizeNetome is a robust big-data mining platform that will aid forward and reverse genetics research and functional genomics studies in plants. The MaizeNetome database is freely available at http://minteractome.ncpgr.cn/. This research was supported by the National Natural Science Foundation of China (32272158, 32270712, 92035302) and Outstanding Youth Team Project of Center Universities (2662023PY007). We thank the high-performance computing platform at the National Key Laboratory of Crop Genetic Improvement in Huazhong Agricultural University.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
背后丹烟完成签到,获得积分10
刚刚
5秒前
闪闪牛排发布了新的文献求助10
5秒前
烟花应助淡然短靴采纳,获得10
7秒前
黄春天完成签到 ,获得积分10
9秒前
9秒前
背后丹烟发布了新的文献求助10
9秒前
901IQLiko发布了新的文献求助10
10秒前
wuhoo完成签到,获得积分10
10秒前
小小杜给小小杜的求助进行了留言
12秒前
13秒前
赘婿应助风卷楼残采纳,获得10
16秒前
果酱肚肚完成签到 ,获得积分10
19秒前
20秒前
一自文又欠完成签到,获得积分10
21秒前
23秒前
在水一方应助科研通管家采纳,获得10
23秒前
所所应助科研通管家采纳,获得10
23秒前
科里斯皮尔应助熊二浪采纳,获得10
25秒前
27秒前
英俊的铭应助alden采纳,获得10
28秒前
闪闪牛排完成签到,获得积分20
29秒前
29秒前
爆米花应助Taylor_Zhou采纳,获得10
29秒前
称心映寒完成签到 ,获得积分10
30秒前
30秒前
丘比特应助科研小笨猪采纳,获得150
31秒前
31秒前
larva发布了新的文献求助10
32秒前
研友_LJGmvn发布了新的文献求助10
34秒前
sibo发布了新的文献求助10
35秒前
风卷楼残发布了新的文献求助10
36秒前
larva完成签到,获得积分10
38秒前
39秒前
婷婷完成签到 ,获得积分10
39秒前
搜集达人应助活力以冬采纳,获得10
42秒前
sibo完成签到,获得积分10
42秒前
CipherSage应助1234采纳,获得10
44秒前
qazcy发布了新的文献求助200
45秒前
高分求助中
【本贴是提醒信息,请勿应助】请在求助之前详细阅读求助说明!!!! 20000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 800
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
Challenges, Strategies, and Resiliency in Disaster and Risk Management 500
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2481796
求助须知:如何正确求助?哪些是违规求助? 2144399
关于积分的说明 5469867
捐赠科研通 1866912
什么是DOI,文献DOI怎么找? 927910
版权声明 563039
科研通“疑难数据库(出版商)”最低求助积分说明 496404