化学
烯烃
氢化物
组合化学
生物催化
氢原子
烯烃纤维
不对称氢化
转移加氢
氢
催化作用
有机化学
对映选择合成
反应机理
钌
烷基
作者
Jaicy Vallapurackal,R. Mandal,Justin Bossenbroek,Aris Rubio,Ethan Poladian,James Collings,César Guerra Torres,Mary A. Hendrickson,J Morales,M. H. Lyons,Kenneth R. Schultz,Hannah S. Shafaat,K. N. Houk,Soumitra V. Athavale
标识
DOI:10.26434/chemrxiv-2025-92d97
摘要
Alkene hydrogenation is a cornerstone of chemical synthesis, yet enzymatic strategies remain limited to electron deficient substrates via hydride transfer. With heme enzymes, we unlock an unprecedented hydrogenation pathway – termed biocatalytic cooperative metal hydrogen atom transfer – for the asymmetric reduction of unactivated olefins. A silane promoted, heme-cysteine redox cycle in the active site catalyzes sequential hydrogen atom transfer to challenging scaffolds including 1,1-disubstituted as well as tri- and tetrasubstituted alkenes. The evolved enzymes are promiscuous, oxygen-tolerant, utilize earth-abundant iron, and can operate on gram scale under ambient conditions. Orthogonal hydrogen atom sources enable site-divergent asymmetric isotope labeling. Mechanistic and computational studies support a stepwise radical process, highlighting the potential for independent stereocontrol during the delivery of each hydrogen atom. Our work introduces a fundamentally new biochemical logic for stereoselective olefin reduction and provides a platform for next-generation biocatalytic hydrogenation.
科研通智能强力驱动
Strongly Powered by AbleSci AI