已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Computed tomography-based deep learning and multi-instance learning for predicting microvascular invasion and prognosis in hepatocellular carcinoma

肝细胞癌 医学 计算机断层摄影术 深度学习 放射科 人工智能 病理 肿瘤科 内科学 计算机科学
作者
Yong-Yi Cen,H Nong,Xiaoxiao Huang,Xin-Jie Lu,Chaodong Pu,Lihong Huang,Xiaojun Zheng,Zhao-Lin Pan,Yin Huang,Ke Ding,Dayang Huang
出处
期刊:World Journal of Gastroenterology [Baishideng Publishing Group]
卷期号:31 (30)
标识
DOI:10.3748/wjg.v31.i30.109186
摘要

BACKGROUND Microvascular invasion (MVI) is an important prognostic factor in hepatocellular carcinoma (HCC), but its preoperative prediction remains challenging. AIM To develop and validate a 2.5-dimensional (2.5D) deep learning-based multi-instance learning (MIL) model (MIL signature) for predicting MVI in HCC, evaluate and compare its performance against the radiomics signature and clinical signature, and assess its prognostic predictive value in both surgical resection and transcatheter arterial chemoembolization (TACE) cohorts. METHODS A retrospective cohort consisting of 192 patients with pathologically confirmed HCC was included, of whom 68 were MVI-positive and 124 were MVI-negative. The patients were randomly assigned to a training set (134 patients) and a validation set (58 patients) in a 7:3 ratio. An additional 45 HCC patients undergoing TACE treatment were included in the TACE validation cohort. A modeling strategy based on computed tomography arterial phase images was implemented, utilizing 2.5D deep learning in combination with a MIL framework for the prediction of MVI in HCC. Moreover, this method was compared with the radiomics signature and clinical signatures, and the predictive performance of the various models was evaluated using receiver operating characteristic curves and decision curve analysis (DCA), with DeLong’s test applied to compare the area under the curve (AUC) between models. Kaplan-Meier curves were utilized to analyze differences in recurrence-free survival (RFS) or progression-free survival (PFS) among different HCC treatment cohorts stratified by MIL signature risk. RESULTS MIL signature demonstrated superior performance in the validation set (AUC = 0.877), significantly surpassing the radiomics signature (AUC = 0.727, P = 0.047) and clinical signature (AUC = 0.631, P = 0.004). DCA curves indicated that the MIL signature provided a greater clinical net benefit across the full spectrum of risk thresholds. In the prognostic analysis, high- and low-risk groups stratified by the MIL signature exhibited significant differences in RFS within the surgical resection cohort (training set P = 0.0058, validation set P = 0.031) and PFS within the TACE treatment cohort (P = 0.045). CONCLUSION MIL signature demonstrates more accurate MVI prediction in HCC, surpassing radiomics signature and clinical signature, and offers precise prognostic stratification, thereby providing new technical support for personalized HCC treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
丘比特应助dogontree采纳,获得10
2秒前
4秒前
小何发布了新的文献求助150
5秒前
6秒前
Drwenlu完成签到,获得积分10
7秒前
7秒前
8秒前
Ava应助nnnd77采纳,获得10
9秒前
AsterHe发布了新的文献求助10
10秒前
Drwenlu发布了新的文献求助10
10秒前
12秒前
13秒前
11完成签到,获得积分10
14秒前
14秒前
田様应助你命网友采纳,获得10
14秒前
zdyfychenyan完成签到 ,获得积分10
15秒前
彻底发布了新的文献求助10
15秒前
orixero应助勤劳水云采纳,获得10
16秒前
18秒前
miaomiao发布了新的文献求助10
20秒前
dogontree发布了新的文献求助10
20秒前
oxs完成签到 ,获得积分10
20秒前
陶醉的蜜蜂完成签到 ,获得积分10
21秒前
彻底完成签到,获得积分10
22秒前
SciGPT应助flyabc采纳,获得10
23秒前
23秒前
24秒前
刘可涛完成签到,获得积分20
25秒前
anny发布了新的文献求助10
25秒前
28秒前
29秒前
kayee发布了新的文献求助10
30秒前
xiazhishang应助科研通管家采纳,获得10
31秒前
xiazhishang应助科研通管家采纳,获得10
31秒前
xiazhishang应助科研通管家采纳,获得10
31秒前
404NotFOUND应助科研通管家采纳,获得30
32秒前
NexusExplorer应助科研通管家采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to the Philosophy of Sport 555
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Parenchymal volume and functional recovery after clamped partial nephrectomy: potential discrepancies 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4681235
求助须知:如何正确求助?哪些是违规求助? 4057106
关于积分的说明 12544644
捐赠科研通 3752177
什么是DOI,文献DOI怎么找? 2072236
邀请新用户注册赠送积分活动 1101310
科研通“疑难数据库(出版商)”最低求助积分说明 980669